scispace - formally typeset
Search or ask a question
Author

Matthew Turk

Bio: Matthew Turk is an academic researcher from Toyota Technological Institute at Chicago. The author has contributed to research in topics: Augmented reality & Facial recognition system. The author has an hindex of 55, co-authored 198 publications receiving 30972 citations. Previous affiliations of Matthew Turk include Massachusetts Institute of Technology & University of California.


Papers
More filters
Proceedings ArticleDOI
03 Sep 2004
TL;DR: A robust real-time hand gesture recognition system that is capable of being the sole input provider for a demonstration application and achieves usability and interactivity even when both the head-worn camera and the object of interest are in motion.
Abstract: Vision-based user interfaces are a feasible and advantageous modality for wearable computers. To substantiate this claim, we present a robust real-time hand gesture recognition system that is capable of being the sole input provider for a demonstration application. It achieves usability and interactivity even when both the head-worn camera and the object of interest are in motion. We describe a set of general gesture-based interaction styles and explore their characteristics in terms of task suitability and the computer vision algorithms required for their recognition. Preliminary evaluation of our prototype system leads to the conclusion that vision-based interfaces have achieved the maturity necessary to help overcome some limitations of more traditional mobile user interfaces.

81 citations

Proceedings ArticleDOI
23 Jun 2008
TL;DR: This paper presents an efficient partial shape matching method based on the Smith-Waterman algorithm, which uses a probabilistic similarity measurement, p-value, to evaluate the similarity of two shapes.
Abstract: This paper presents an efficient partial shape matching method based on the Smith-Waterman algorithm. For two contours of m and n points respectively, the complexity of our method to find similar parts is only O(mn). In addition to this improvement in efficiency, we also obtain comparable accurate matching with fewer shape descriptors. Also, in contrast to arbitrary distance functions that are used by previous methods, we use a probabilistic similarity measurement, p-value, to evaluate the similarity of two shapes. Our experiments on several public shape databases indicate that our method outperforms state-of-the-art global and partial shape matching algorithms in various scenarios.

75 citations

Proceedings ArticleDOI
05 Nov 2012
TL;DR: A user study evaluating the benefits of geometrically correct user-perspective rendering using an Augmented Reality (AR) magic lens finds that a tablet-sized display allows for significantly faster performance of a selection task and that a user-Perspective lens has benefits over a device-persistive lens for a selectiontask.
Abstract: In this paper we present a user study evaluating the benefits of geometrically correct user-perspective rendering using an Augmented Reality (AR) magic lens. In simulation we compared a user-perspective magic lens against the common device-perspective magic lens on both phone-sized and tablet-sized displays. Our results indicate that a tablet-sized display allows for significantly faster performance of a selection task and that a user-perspective lens has benefits over a device-perspective lens for a selection task. Based on these promising results, we created a proof-of-concept prototype, engineered with current off-the-shelf devices and software. To our knowledge, this is the first geometrically correct user-perspective magic lens.

71 citations

Journal ArticleDOI
TL;DR: The motivations for organizing this special section were to better address the challenges of face recognition in real-world scenarios, to promote systematic research and evaluation of promising methods and systems, to provide a snapshot of where the authors are in this domain, and to stimulate discussion about future directions.
Abstract: The motivations for organizing this special section were to better address the challenges of face recognition in real-world scenarios, to promote systematic research and evaluation of promising methods and systems, to provide a snapshot of where we are in this domain, and to stimulate discussion about future directions. We solicited original contributions of research on all aspects of real-world face recognition, including: the design of robust face similarity features and metrics; robust face clustering and sorting algorithms; novel user interaction models and face recognition algorithms for face tagging; novel applications of web face recognition; novel computational paradigms for face recognition; challenges in large scale face recognition tasks, e.g., on the Internet; face recognition with contextual information; face recognition benchmarks and evaluation methodology for moderately controlled or uncontrolled environments; and video face recognition. We received 42 original submissions, four of which were rejected without review; the other 38 papers entered the normal review process. Each paper was reviewed by three reviewers who are experts in their respective topics. More than 100 expert reviewers have been involved in the review process. The papers were equally distributed among the guest editors. A final decision for each paper was made by at least two guest editors assigned to it. To avoid conflict of interest, no guest editor submitted any papers to this special section.

69 citations


Cited by
More filters
Journal ArticleDOI
22 Dec 2000-Science
TL;DR: An approach to solving dimensionality reduction problems that uses easily measured local metric information to learn the underlying global geometry of a data set and efficiently computes a globally optimal solution, and is guaranteed to converge asymptotically to the true structure.
Abstract: Scientists working with large volumes of high-dimensional data, such as global climate patterns, stellar spectra, or human gene distributions, regularly confront the problem of dimensionality reduction: finding meaningful low-dimensional structures hidden in their high-dimensional observations. The human brain confronts the same problem in everyday perception, extracting from its high-dimensional sensory inputs-30,000 auditory nerve fibers or 10(6) optic nerve fibers-a manageably small number of perceptually relevant features. Here we describe an approach to solving dimensionality reduction problems that uses easily measured local metric information to learn the underlying global geometry of a data set. Unlike classical techniques such as principal component analysis (PCA) and multidimensional scaling (MDS), our approach is capable of discovering the nonlinear degrees of freedom that underlie complex natural observations, such as human handwriting or images of a face under different viewing conditions. In contrast to previous algorithms for nonlinear dimensionality reduction, ours efficiently computes a globally optimal solution, and, for an important class of data manifolds, is guaranteed to converge asymptotically to the true structure.

13,652 citations

Journal ArticleDOI
TL;DR: A face recognition algorithm which is insensitive to large variation in lighting direction and facial expression is developed, based on Fisher's linear discriminant and produces well separated classes in a low-dimensional subspace, even under severe variations in lighting and facial expressions.
Abstract: We develop a face recognition algorithm which is insensitive to large variation in lighting direction and facial expression. Taking a pattern classification approach, we consider each pixel in an image as a coordinate in a high-dimensional space. We take advantage of the observation that the images of a particular face, under varying illumination but fixed pose, lie in a 3D linear subspace of the high dimensional image space-if the face is a Lambertian surface without shadowing. However, since faces are not truly Lambertian surfaces and do indeed produce self-shadowing, images will deviate from this linear subspace. Rather than explicitly modeling this deviation, we linearly project the image into a subspace in a manner which discounts those regions of the face with large deviation. Our projection method is based on Fisher's linear discriminant and produces well separated classes in a low-dimensional subspace, even under severe variation in lighting and facial expressions. The eigenface technique, another method based on linearly projecting the image space to a low dimensional subspace, has similar computational requirements. Yet, extensive experimental results demonstrate that the proposed "Fisherface" method has error rates that are lower than those of the eigenface technique for tests on the Harvard and Yale face databases.

11,674 citations

Journal ArticleDOI
21 Oct 1999-Nature
TL;DR: An algorithm for non-negative matrix factorization is demonstrated that is able to learn parts of faces and semantic features of text and is in contrast to other methods that learn holistic, not parts-based, representations.
Abstract: Is perception of the whole based on perception of its parts? There is psychological and physiological evidence for parts-based representations in the brain, and certain computational theories of object recognition rely on such representations. But little is known about how brains or computers might learn the parts of objects. Here we demonstrate an algorithm for non-negative matrix factorization that is able to learn parts of faces and semantic features of text. This is in contrast to other methods, such as principal components analysis and vector quantization, that learn holistic, not parts-based, representations. Non-negative matrix factorization is distinguished from the other methods by its use of non-negativity constraints. These constraints lead to a parts-based representation because they allow only additive, not subtractive, combinations. When non-negative matrix factorization is implemented as a neural network, parts-based representations emerge by virtue of two properties: the firing rates of neurons are never negative and synaptic strengths do not change sign.

11,500 citations

Journal ArticleDOI
TL;DR: This work considers the problem of automatically recognizing human faces from frontal views with varying expression and illumination, as well as occlusion and disguise, and proposes a general classification algorithm for (image-based) object recognition based on a sparse representation computed by C1-minimization.
Abstract: We consider the problem of automatically recognizing human faces from frontal views with varying expression and illumination, as well as occlusion and disguise. We cast the recognition problem as one of classifying among multiple linear regression models and argue that new theory from sparse signal representation offers the key to addressing this problem. Based on a sparse representation computed by C1-minimization, we propose a general classification algorithm for (image-based) object recognition. This new framework provides new insights into two crucial issues in face recognition: feature extraction and robustness to occlusion. For feature extraction, we show that if sparsity in the recognition problem is properly harnessed, the choice of features is no longer critical. What is critical, however, is whether the number of features is sufficiently large and whether the sparse representation is correctly computed. Unconventional features such as downsampled images and random projections perform just as well as conventional features such as eigenfaces and Laplacianfaces, as long as the dimension of the feature space surpasses certain threshold, predicted by the theory of sparse representation. This framework can handle errors due to occlusion and corruption uniformly by exploiting the fact that these errors are often sparse with respect to the standard (pixel) basis. The theory of sparse representation helps predict how much occlusion the recognition algorithm can handle and how to choose the training images to maximize robustness to occlusion. We conduct extensive experiments on publicly available databases to verify the efficacy of the proposed algorithm and corroborate the above claims.

9,658 citations

01 Jan 1999
TL;DR: In this article, non-negative matrix factorization is used to learn parts of faces and semantic features of text, which is in contrast to principal components analysis and vector quantization that learn holistic, not parts-based, representations.
Abstract: Is perception of the whole based on perception of its parts? There is psychological and physiological evidence for parts-based representations in the brain, and certain computational theories of object recognition rely on such representations. But little is known about how brains or computers might learn the parts of objects. Here we demonstrate an algorithm for non-negative matrix factorization that is able to learn parts of faces and semantic features of text. This is in contrast to other methods, such as principal components analysis and vector quantization, that learn holistic, not parts-based, representations. Non-negative matrix factorization is distinguished from the other methods by its use of non-negativity constraints. These constraints lead to a parts-based representation because they allow only additive, not subtractive, combinations. When non-negative matrix factorization is implemented as a neural network, parts-based representations emerge by virtue of two properties: the firing rates of neurons are never negative and synaptic strengths do not change sign.

9,604 citations