scispace - formally typeset
Search or ask a question
Author

Matthew W. Jones-Rhoades

Other affiliations: Knox College
Bio: Matthew W. Jones-Rhoades is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Gene silencing & Regulation of gene expression. The author has an hindex of 9, co-authored 10 publications receiving 10527 citations. Previous affiliations of Matthew W. Jones-Rhoades include Knox College.

Papers
More filters
Journal ArticleDOI
26 Dec 2003-Cell
TL;DR: The predicted regulatory targets of mammalian miRNAs were enriched for genes involved in transcriptional regulation but also encompassed an unexpectedly broad range of other functions.

5,246 citations

Journal ArticleDOI
TL;DR: The importance of miRNA-directed gene regulation during plant development is now particularly clear and typically at the cores of gene regulatory networks, targeting genes that are themselves regulators, such as those encoding transcription factors and F-box proteins.
Abstract: MicroRNAs (miRNAs) are small, endogenous RNAs that regulate gene expression in plants and animals. In plants, these approximately 21-nucleotide RNAs are processed from stem-loop regions of long primary transcripts by a Dicer-like enzyme and are loaded into silencing complexes, where they generally direct cleavage of complementary mRNAs. Although plant miRNAs have some conserved functions extending beyond development, the importance of miRNA-directed gene regulation during plant development is now particularly clear. Identified in plants less than four years ago, miRNAs are already known to play numerous crucial roles at each major stage of development-typically at the cores of gene regulatory networks, targeting genes that are themselves regulators, such as those encoding transcription factors and F-box proteins.

2,560 citations

Journal ArticleDOI
TL;DR: Comparative genomic approaches were developed to systematically identify both miRNAs and their targets that are conserved in Arabidopsis thaliana and rice, and the expression of miR395, the sulfurylase-targeting miRNA, increases upon sulfate starvation, showing that miRNAAs can be induced by environmental stress.

2,217 citations

Journal ArticleDOI
TL;DR: It is confirmed that disrupted miRNA pairing, not changes in PHB protein sequence, causes the developmental defects in phb‐d mutants, supporting a model in which this region of the silencing RNA nucleates pairing to its target.
Abstract: MicroRNAs (miRNAs) are B22-nucleotide noncoding RNAs that can regulate gene expression by directing mRNA degradation or inhibiting productive translation. Dominant mutations in PHABULOSA (PHB )a ndPHAVOLUTA (PHV) map to a miR165/166 complementary site and impair miRNA-guided cleavage of these mRNAs in vitro. Here, we confirm that disrupted miRNA pairing, not changes in PHB protein sequence, causes the developmental defects in phb-d mutants. In planta, disrupting miRNA pairing near the center of the miRNA complementary site had far milder developmental consequences than more distal mismatches. These differences correlated with differences in miRNA-directed cleavage efficiency in vitro, where mismatch scanning revealed more tolerance for mismatches at the center and 3 0 end of the miRNA compared to mismatches to the miRNA 5 0 region. In this respect, miR165/ 166 resembles animal miRNAs in its pairing requirements. Pairing to the 5 0 portion of the small silencing RNA appears crucial regardless of the mode of post-transcriptional repression or whether it occurs in plants or animals, supporting a model in which this region of the silencing RNA nucleates pairing to its target.

714 citations

Patent
23 Dec 2005
TL;DR: In this article, the authors proposed a method for identifying targets of miRNA sequences by comparing gene sequences comprising UTRs with miRNA sequence to determine the degree of interaction, for example, by determining a free energy measurement between the mi RNA sequence and the UTR, and/or by determining complementarity between at least a portion of the miRN sequence and UTR.
Abstract: The present invention generally relates to microRNAs such as vertebrate microRNA (miRNA), for example, mammalian miRNA. Various aspects of the invention are directed to the detection, production, or expression of miRNA. In one aspect, the invention provides systems and methods for identifying targets of miRNA sequences. For instance, in one embodiment, gene sequences comprising UTRs are compared with miRNA sequences to determine the degree of interaction, for example, by determining a free energy measurement between the miRNA sequence and the UTR, and/or by determining complementarity between at least a portion of the miRNA sequence and the UTR. In another aspect, the invention is directed to the regulation of gene expression using miRNA. For example, gene expression within a cell may be altered by exposing the cell to an oligonucleotide comprising a sequence that is substantially antisense to at least a portion of an miRNA region of the gene, for example, antisense to a 6-mer or 7-mer portion of the miRNA. In still another aspect, the invention is directed to the treatment of cancer. For instance, in one set of embodiments, an isolated oligonucleotide comprising a sequence that is substantially antisense to an miRNA, or a portion of an miRNA, is administered to a subject having or being at risk of cancer. Yet other aspects of the invention are directed to compositions or kits including oligonucleotides comprising a sequence that is substantially antisense to an miRNA (or a portion of an miRNA), methods of promoting any of the above aspects, or the like.

134 citations


Cited by
More filters
Journal ArticleDOI
23 Jan 2004-Cell
TL;DR: Although they escaped notice until relatively recently, miRNAs comprise one of the more abundant classes of gene regulatory molecules in multicellular organisms and likely influence the output of many protein-coding genes.

32,946 citations

Journal ArticleDOI
23 Jan 2009-Cell
TL;DR: The current understanding of miRNA target recognition in animals is outlined and the widespread impact of miRNAs on both the expression and evolution of protein-coding genes is discussed.

18,036 citations

Journal ArticleDOI
14 Jan 2005-Cell
TL;DR: In a four-genome analysis of 3' UTRs, approximately 13,000 regulatory relationships were detected above the estimate of false-positive predictions, thereby implicating as miRNA targets more than 5300 human genes, which represented 30% of the gene set.

11,624 citations

Journal ArticleDOI
15 Sep 2004-Nature
TL;DR: Evidence is mounting that animal miRNAs are more numerous, and their regulatory impact more pervasive, than was previously suspected.
Abstract: MicroRNAs (miRNAs) are small RNAs that regulate the expression of complementary messenger RNAs. Hundreds of miRNA genes have been found in diverse animals, and many of these are phylogenetically conserved. With miRNA roles identified in developmental timing, cell death, cell proliferation, haematopoiesis and patterning of the nervous system, evidence is mounting that animal miRNAs are more numerous, and their regulatory impact more pervasive, than was previously suspected.

9,986 citations

Journal ArticleDOI
TL;DR: This work overhauled its tool for finding preferential conservation of sequence motifs and applied it to the analysis of human 3'UTRs, increasing by nearly threefold the detected number of preferentially conserved miRNA target sites.
Abstract: MicroRNAs (miRNAs) are small endogenous RNAs that pair to sites in mRNAs to direct post-transcriptional repression. Many sites that match the miRNA seed (nucleotides 2–7), particularly those in 3 untranslated regions (3UTRs), are preferentially conserved. Here, we overhauled our tool for finding preferential conservation of sequence motifs and applied it to the analysis of human 3UTRs, increasing by nearly threefold the detected number of preferentially conserved miRNA target sites. The new tool more efficiently incorporates new genomes and more completely controls for background conservation by accounting for mutational biases, dinucleotide conservation rates, and the conservation rates of individual UTRs. The improved background model enabled preferential conservation of a new site type, the “offset 6mer,” to be detected. In total, >45,000 miRNA target sites within human 3UTRs are conserved above background levels, and >60% of human protein-coding genes have been under selective pressure to maintain pairing to miRNAs. Mammalian-specific miRNAs have far fewer conserved targets than do the more broadly conserved miRNAs, even when considering only more recently emerged targets. Although pairing to the 3 end of miRNAs can compensate for seed mismatches, this class of sites constitutes less than 2% of all preferentially conserved sites detected. The new tool enables statistically powerful analysis of individual miRNA target sites, with the probability of preferentially conserved targeting (PCT) correlating with experimental measurements of repression. Our expanded set of target predictions (including conserved 3-compensatory sites), are available at the TargetScan website, which displays the PCT for each site and each predicted target.

7,744 citations