scispace - formally typeset
Search or ask a question
Author

Matthias A. Hediger

Bio: Matthias A. Hediger is an academic researcher from University of Bern. The author has contributed to research in topics: Cotransporter & TRPV6. The author has an hindex of 94, co-authored 254 publications receiving 36938 citations. Previous affiliations of Matthias A. Hediger include University Hospital of Bern & University of Cologne.
Topics: Cotransporter, TRPV6, Transporter, Amino acid, Calcium


Papers
More filters
Journal ArticleDOI
31 Jul 1997-Nature
TL;DR: A new metal-ion transporter in the rat, DCT1, which has an unusually broad substrate range that includes Fe2+, Zn2+, Mn2+, Co2+, Cd2+, Cu2+, Ni2+ and Pb2+.
Abstract: Metal ions are essential cofactors for a wealth of biological processes, including oxidative phosphorylation, gene regulation and free-radical homeostasis. Failure to maintain appropriate levels of metal ions in humans is a feature of hereditary haemochromatosis, disorders of metal-ion deficiency, and certain neurodegenerative diseases. Despite their pivotal physiological roles, however, there is no molecular information on how metal ions are actively absorbed by mammalian cells. We have now identified a new metal-ion transporter in the rat, DCT1, which has an unusually broad substrate range that includes Fe2+, Zn2+, Mn2+, Co2+, Cd2+, Cu2+, Ni2+ and Pb2+. DCT1 mediates active transport that is proton-coupled and depends on the cell membrane potential. It is a 561-amino-acid protein with 12 putative membrane-spanning domains and is ubiquitously expressed, most notably in the proximal duodenum. DCT1 is upregulated by dietary iron deficiency, and may represent a key mediator of intestinal iron absorption. DCT1 is a member of the 'natural-resistance-associated macrophage protein' (Nramp) family and thus its properties provide insight into how these proteins confer resistance to pathogens.

2,989 citations

Journal ArticleDOI
09 Dec 1993-Nature
TL;DR: The cloning of complementary DNA encoding an extracellular Ca2+ -sensing receptor from bovine parathyroid is reported with pharmacological and functional properties nearly identical to those of the native receptor.
Abstract: Maintenance of a stable internal environment within complex organisms requires specialized cells that sense changes in the extracellular concentration of specific ions (such as Ca2+). Although the molecular nature of such ion sensors is unknown, parathyroid cells possess a cell surface Ca(2+)-sensing mechanism that also recognizes trivalent and polyvalent cations (such as neomycin) and couples by changes in phosphoinositide turnover and cytosolic Ca2+ to regulation of parathyroid hormone secretion. The latter restores normocalcaemia by acting on kidney and bone. We now report the cloning of complementary DNA encoding an extracellular Ca(2+)-sensing receptor from bovine parathyroid with pharmacological and functional properties nearly identical to those of the native receptor. The novel approximately 120K receptor shares limited similarity with the metabotropic glutamate receptors and features a large extracellular domain, containing clusters of acidic amino-acid residues possibly involved in calcium binding, coupled to a seven-membrane-spanning domain like those in the G-protein-coupled receptor superfamily.

2,542 citations

Journal ArticleDOI
01 Mar 1996-Neuron
TL;DR: It is suggested that glial glutamate transporters provide the majority of functional glutamate transport and are essential for maintaining low extracellular glutamate and for preventing chronic glutamate neurotoxicity.

2,482 citations

Journal ArticleDOI
TL;DR: The isolation and characterization of a novel cDNA (Ireg1) encoding a duodenal protein that is localized to the basolateral membrane of polarized epithelial cells are described and it is concluded that IREG1 represents the long-sought duodental iron export protein and is upregulated in the iron overload disease, hereditary hemochromatosis.

1,393 citations

Journal ArticleDOI
03 Dec 1992-Nature
TL;DR: A complementary DNA encoding an electrogenic Na+ but not Cl−-dependent high-affinity glutamate transporter (named EAAC1) is isolated from rabbit small intestine by expression in Xenopus oocytes and transcripts are found in specific neuronal structures in the central nervous system as well as in the small intestine, kidney, liver and heart.
Abstract: Glutamate transport across plasma membranes of neurons, glial cells and epithelial cells of the small intestine and kidney proceeds by high- and low-affinity transport systems. High-affinity (Km 2-50 microM) transport systems have been described that are dependent on Na+ but not Cl- ions and have a preference for L-glutamate and D- and L-aspartate. In neurons high-affinity glutamate transporters are essential for terminating the postsynaptic action of glutamate by rapidly removing released glutamate from the synaptic cleft. We have isolated a complementary DNA encoding an electrogenic Na(+)- but not Cl(-)-dependent high-affinity glutamate transporter (named EAAC1) from rabbit small intestine by expression in Xenopus oocytes. We find EAAC1 transcripts in specific neuronal structures in the central nervous system as well as in the small intestine, kidney, liver and heart. The function and pharmacology of the expressed protein are characteristic of the high-affinity glutamate transporter already identified in neuronal tissues. The abnormal glutamate transport that is associated with certain neurodegenerative diseases and which occurs during ischaemia and anoxia could be due to abnormalities in the function of this protein.

1,346 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The 11th edition of Harrison's Principles of Internal Medicine welcomes Anthony Fauci to its editorial staff, in addition to more than 85 new contributors.
Abstract: The 11th edition of Harrison's Principles of Internal Medicine welcomes Anthony Fauci to its editorial staff, in addition to more than 85 new contributors. While the organization of the book is similar to previous editions, major emphasis has been placed on disorders that affect multiple organ systems. Important advances in genetics, immunology, and oncology are emphasized. Many chapters of the book have been rewritten and describe major advances in internal medicine. Subjects that received only a paragraph or two of attention in previous editions are now covered in entire chapters. Among the chapters that have been extensively revised are the chapters on infections in the compromised host, on skin rashes in infections, on many of the viral infections, including cytomegalovirus and Epstein-Barr virus, on sexually transmitted diseases, on diabetes mellitus, on disorders of bone and mineral metabolism, and on lymphadenopathy and splenomegaly. The major revisions in these chapters and many

6,968 citations

Journal ArticleDOI
TL;DR: This review summarizes the current state of knowledge of the functions of NOX enzymes in physiology and pathology.
Abstract: For a long time, superoxide generation by an NADPH oxidase was considered as an oddity only found in professional phagocytes. Over the last years, six homologs of the cytochrome subunit of the phag...

5,873 citations

Journal ArticleDOI
17 Dec 2004-Science
TL;DR: It is reported that hepcidin bound to ferroportin in tissue culture cells, leading to decreased export of cellular iron and the posttranslational regulation of ferroports by hePCidin may complete a homeostatic loop.
Abstract: Hepcidin is a peptide hormone secreted by the liver in response to iron loading and inflammation. Decreased hepcidin leads to tissue iron overload, whereas hepcidin overproduction leads to hypoferremia and the anemia of inflammation. Ferroportin is an iron exporter present on the surface of absorptive enterocytes, macrophages, hepatocytes, and placental cells. Here we report that hepcidin bound to ferroportin in tissue culture cells. After binding, ferroportin was internalized and degraded, leading to decreased export of cellular iron. The posttranslational regulation of ferroportin by hepcidin may thus complete a homeostatic loop: Iron regulates the secretion of hepcidin, which in turn controls the concentration of ferroportin on the cell surface.

4,109 citations