scispace - formally typeset
Search or ask a question
Author

Matthias Breuning

Bio: Matthias Breuning is an academic researcher from University of Bayreuth. The author has contributed to research in topics: Enantioselective synthesis & Axial chirality. The author has an hindex of 20, co-authored 76 publications receiving 3061 citations. Previous affiliations of Matthias Breuning include University of Würzburg & Harvard University.


Papers
More filters
Journal ArticleDOI
TL;DR: This Review classifies strategies in the asymmetric synthesis of axially chiral biaryl compounds according to their underlying concepts and critically evaluates their scope and limitations with reference to selected model reactions and applications.
Abstract: A rotationally hindered and thus stereogenic biaryl axis is the structurally and stereochemically decisive element of a steadily growing number of natural products, chiral auxiliaries, and catalysts. Thus, it is not surprising that significant advances have been made in the asymmetric synthesis of axially chiral biaryl compounds over the past decade. In addition to the classic approach (direct stereoselective aryl-aryl coupling), innovative concepts have been developed in which the asymmetric information is introduced into a preformed, but achiral-that is, symmetric or configurationally labile-biaryl compound, or in which an aryl--C single bond is stereoselectively transformed into an axis. This Review classifies these strategies according to their underlying concepts and critically evaluates their scope and limitations with reference to selected model reactions and applications. Furthermore, the preconditions required for the existence of axial chirality in biaryl compounds are discussed.

985 citations

Journal ArticleDOI
TL;DR: Gerhard Bringmann's research interests focus on the field of analytical, synthetic, and computational natural product chemistry, i.e., on axially chiral biaryls, which is characterized by a broad structural diversity.
Abstract: Intellectual curiosity has always been one of the major driving forces leading to new advances in chemistry. At the onset of the 20th century, the fact that biaryls could be optically active even if lacking asymmetrically substituted carbon atoms arose interest, hinting at a novel type of stereomerism. It took quite a while (and some bizarre explanations)1 until in 1922 Christie and Kenner2 first correctly recognized that the phenomenon was the consequence of a hindered rotation about the aryl-aryl single bondshence termed atropisomerism by Kuhn. Still, no particular attention was initially paid to this class of stereoisomers until enantiomerically pure biaryls, such as BINAP (1),3 were found to be excellent ligands in asymmetric catalysis and until the chiral biaryl unit was recognized as the decisive structural element of many natural products (Figure 1).4,5 With the modern screening techniques and the bioassayguided search for novel compounds, the number of isolated axially chiral natural biaryls is steadily increasing.4 This class of secondary metabolites is characterized by a broad structural diversity, reaching from relatively simple molecules like the C2-symmetric biphenyl 2, which solely contains the element of axial chirality,6 to more complex compounds, like, e.g., the dimeric naphthylisoquinoline alkaloids michellamine A [(P,P)-3] and its axial epimer (i.e., its atropodiastereomer), michellamine B [(P,M)-3],7,8 which possess even three biaryl axes, of which the two outer ones are stereogenic, while * To whom correspondence should be addressed. E-mail: bringmann@ chemie.uni-wuerzburg.de; breuning@chemie.uni-wuerzburg.de. † These authors contributed equally to this work. ‡ Present address: Institute of Organic Chemistry, RWTH Aachen, Landoltweg 1, 52074 Aachen, Germany. § Present address: Kekulé Institute of Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk Str. 1, 53121 Bonn, Germany. Gerhard Bringmann was born in 1951 and studied chemistry in Gie en and Münster, Germany. After his Ph.D. with Prof. B. Franck in 1978 and postdoctoral studies with Prof. Sir D. H. R. Barton in Gif-sur-Yvette (France), he passed his habilitation at the University of Münster in 1984. In 1986, he received offers for full professorships of Organic Chemistry at the Universities of Vienna and Würzburg, of which he accepted the latter in 1987. In 1998, he was offered the position of director at the Leibniz Institute of Plant Biochemistry in Halle, which he declined. His research interests focus on the field of analytical, synthetic, and computational natural product chemistry, i.e., on axially chiral biaryls. He received several prizes and awards, among them the Otto-Klung Award in chemistry (1988), the Prize for Good Teaching of the Free State of Bavaria (1999), the Adolf-Windaus Medal (2006), the Honorary Doctorate of the University of Kinshasa (2006), the Paul-J.-Scheuer Award (2007), and the Honorary Guest Professorship of Peking University (2008). Chem. Rev. 2011, 111, 563–639 563

936 citations

Journal ArticleDOI
TL;DR: In this paper, the Voraussetzungen fur das Auftreten von Axialchiralitat diskutiert werden anhand ausgewahlter Beispiele kritisch beurteilt.
Abstract: Eine rotationsgehinderte und dadurch stereogene Biarylachse ist das strukturell und stereochemisch entscheidende Element einer standig wachsenden Zahl von Naturstoffen, chiralen Auxiliaren und Katalysatoren. Daher ist es nicht uberraschend, dass im letzten Jahrzehnt bedeutende Fortschritte in der asymmetrischen Synthese axial-chiraler Biaryle erzielt worden sind. Neben dem klassischen Zugangsweg, der direkten Aryl-Aryl-Kupplung, sind innovative Konzepte entwickelt worden, in denen die asymmetrische Information in ein schon vorhandenes, aber nicht optisch aktives – symmetrisches oder konfigurativ labiles – Biaryl eingefuhrt oder eine Aryl-C-Einfachbindung stereoselektiv in eine Achse umgewandelt wird. In diesem Aufsatz werden die Strategien nach den zugrunde liegenden Konzepten klassifiziert, und ihre Anwendungsbreite und ihre Beschrankungen werden anhand ausgewahlter Beispiele kritisch beurteilt. Ferner werden die Voraussetzungen fur das Auftreten von Axialchiralitat diskutiert.

301 citations

Journal ArticleDOI
TL;DR: A review of axially chirality in biaryl compounds can be found in this paper, where the asymmetric information is introduced into a preformed, but achiral-that is, symmetric or configurationally labile-biaryl compound.
Abstract: A rotationally hindered and thus stereogenic biaryl axis is the structurally and stereochemically decisive element of a steadily growing number of natural products, chiral auxiliaries, and catalysts. Thus, it is not surprising that significant advances have been made in the asymmetric synthesis of axially chiral biaryl compounds over the past decade. In addition to the classic approach (direct stereoselective aryl-aryl coupling), innovative concepts have been developed in which the asymmetric information is introduced into a preformed, but achiral-that is, symmetric or configurationally labile-biaryl compound, or in which an aryl--C single bond is stereoselectively transformed into an axis. This Review classifies these strategies according to their underlying concepts and critically evaluates their scope and limitations with reference to selected model reactions and applications. Furthermore, the preconditions required for the existence of axial chirality in biaryl compounds are discussed.

163 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A number of improvements have developed the former process into an industrially very useful and attractive method for the construction of aryl -aryl bonds, but the need still exists for more efficient routes whereby the same outcome is accomplished, but with reduced waste and in fewer steps.
Abstract: The biaryl structural motif is a predominant feature in many pharmaceutically relevant and biologically active compounds. As a result, for over a century 1 organic chemists have sought to develop new and more efficient aryl -aryl bond-forming methods. Although there exist a variety of routes for the construction of aryl -aryl bonds, arguably the most common method is through the use of transition-metalmediated reactions. 2-4 While earlier reports focused on the use of stoichiometric quantities of a transition metal to carry out the desired transformation, modern methods of transitionmetal-catalyzed aryl -aryl coupling have focused on the development of high-yielding reactions achieved with excellent selectivity and high functional group tolerance under mild reaction conditions. Typically, these reactions involve either the coupling of an aryl halide or pseudohalide with an organometallic reagent (Scheme 1), or the homocoupling of two aryl halides or two organometallic reagents. Although a number of improvements have developed the former process into an industrially very useful and attractive method for the construction of aryl -aryl bonds, the need still exists for more efficient routes whereby the same outcome is accomplished, but with reduced waste and in fewer steps. In particular, the obligation to use coupling partners that are both activated is wasteful since it necessitates the installation and then subsequent disposal of stoichiometric activating agents. Furthermore, preparation of preactivated aryl substrates often requires several steps, which in itself can be a time-consuming and economically inefficient process.

3,204 citations

Journal ArticleDOI
TL;DR: P palladium and ruthenium catalysts have been described that enable the direct arylation of (hetero)arenes with challenging coupling partners--including electrophilic aryl chlorides and tosylates as well as simple arenes in cross-dehydrogenative arylations.
Abstract: The area of transition-metal-catalyzed direct arylation through cleavage of CH bonds has undergone rapid development in recent years, and is becoming an increasingly viable alternative to traditional cross-coupling reactions with organometallic reagents In particular, palladium and ruthenium catalysts have been described that enable the direct arylation of (hetero)arenes with challenging coupling partners—including electrophilic aryl chlorides and tosylates as well as simple arenes in cross-dehydrogenative arylations Furthermore, less expensive copper, iron, and nickel complexes were recently shown to be effective for economically attractive direct arylations

2,408 citations

Journal ArticleDOI
TL;DR: This Review provides an overview of C-H bond functionalization strategies for the rapid synthesis of biologically active compounds such as natural products and pharmaceutical targets.
Abstract: The direct functionalization of C-H bonds in organic compounds has recently emerged as a powerful and ideal method for the formation of carbon-carbon and carbon-heteroatom bonds. This Review provides an overview of C-H bond functionalization strategies for the rapid synthesis of biologically active compounds such as natural products and pharmaceutical targets.

2,391 citations

Journal ArticleDOI
TL;DR: These studies on macromolecular chiral catalysts demonstrate that these materials are potentially very useful for practical applications and can also be preserved in the rigid and sterically regular polymer provided the catalytically active species of the monomer catalyst is not its aggregate.
Abstract: Because of the tremendous effort of a great number of researchers, the catalytic asymmetric dialkylzinc addition to aldehydes has become a mature method. Ligands of diverse structures have been obtained, and high enantioselectivity for all different types of aldehydes have been achieved. Among the representative excellent catalysts are compounds 1, 8, 120, 325, 352, and 360 discussed above. However, compared to the well-developed dialkylzinc addition, the catalytic asymmetric reactions of aryl-, vinyl-, and alkynylzinc reagents with aldehydes are still very much under developed. Although catalysts such as (S)-402 and 210 prepared by Pu and Bolm have shown good enantioselectivity for the reaction of diphenylzinc with certain aromatic and aliphatic aldehydes, the generality of these catalysts for other [formula: see text] arylzinc reagents have not been studied. The vinylzinc additions using ligands 1 and 412 reported by Oppolzer and Wipf were highly enantioselective for certain aromatic aldehydes but not as good for aliphatic aldehydes. Carreira discovered highly enantioselective alkynylzinc additions to aldehydes promoted by the chiral amino alcohol 415, but this process was not catalytic yet. Ishizaki achieved good enantioselectivity for the catalytic alkynylzinc addition to certain aldehydes by using compounds 160, but the enantioselectivity for simple linear aliphatic aldehydes was low. Another much less explored area is the organozinc addition to ketones. Yus and Fu showed very promising results by using ligands 381 and 406 for both dialkylzinc and diphenylzinc additions to ketones, but the scope of these reactions were still very limited. Therefore, more work is needed for the aryl-, vinyl-, and alkynylzinc additions and for the organozinc addition to ketones, although many good catalysts have been obtained for the dialkylzinc addition to aldehydes. Development of these reactions will allow the catalytic asymmetric synthesis of a great variety of functional chiral alcohols that are either the structural units or synthons of many important organic molecules as well as molecules of biological functions. Macromolecular chiral catalysts have become a very attractive research subject in recent years because these materials offer the advantages of simplified product isolation, easy recovery of the generally quite expensive chiral catalysts, and potential use for continuous production. Three types of macromolecules including flexible achiral polymers anchored with chiral catalysts, rigid and sterically regular main chain chiral polymers, and chiral dendrimers have been used for the asymmetric organozinc addition to aldehydes. Among these materials, the binaphthyl-based polymers such as (R)-451 developed by Pu have shown very high and general enantioselectivity. Study of the binaphthyl polymers in the asymmetric organozinc addition has demonstrated that it is possible to systematically modify the structure and function of the rigid and sterically regular polymer for the development of highly enantioselective polymer catalysts. The catalytic properties of highly enantioselective monomer catalysts can also be preserved in the rigid and sterically regular polymer provided the catalytically active species of the monomer catalyst is not its aggregate. The TADDOL-based polymers and dendrimers prepared by Seebach showed very high and stable enantioselectivity for the diethylzinc addition to benzaldehyde even after many cycles. These studies on macromolecular chiral catalysts demonstrate that these materials are potentially very useful for practical applications.

1,006 citations