scispace - formally typeset
Search or ask a question
Author

Matthias Gehringer

Bio: Matthias Gehringer is an academic researcher from University of Tübingen. The author has contributed to research in topics: Janus kinase & Kinase. The author has an hindex of 14, co-authored 35 publications receiving 692 citations. Previous affiliations of Matthias Gehringer include ETH Zurich & École Polytechnique Fédérale de Lausanne.
Topics: Janus kinase, Kinase, Kinome, Chemistry, Mycolactone

Papers
More filters
Journal ArticleDOI
TL;DR: An overview of warheads-beyond α,β-unsaturated amides-recently used in the design of targeted covalent ligands is provided, with special emphasis on the discussion of reactivity and of case studies illustrating applications in medicinal chemistry and chemical biology.
Abstract: Targeted covalent inhibitors (TCIs) are designed to bind poorly conserved amino acids by means of reactive groups, the so-called warheads. Currently, targeting noncatalytic cysteine residues with acrylamides and other α,β-unsaturated carbonyl compounds is the predominant strategy in TCI development. The recent ascent of covalent drugs has stimulated considerable efforts to characterize alternative warheads for the covalent-reversible and irreversible engagement of noncatalytic cysteine residues as well as other amino acids. This Perspective article provides an overview of warheads—beyond α,β-unsaturated amides—recently used in the design of targeted covalent ligands. Promising reactive groups that have not yet demonstrated their utility in TCI development are also highlighted. Special emphasis is placed on the discussion of reactivity and of case studies illustrating applications in medicinal chemistry and chemical biology.

349 citations

Journal ArticleDOI
TL;DR: It is confirmed that in vitro activity and selectivity translate well into the cellular environment and suggest that the inhibitors presented are powerful tools to elucidate JAK3-specific functions.

87 citations

Journal ArticleDOI
TL;DR: Significant progress in the design of JNK inhibitors displaying selectivity versus other kinases has been achieved within the past 4 years, however, the development of isoform selective JNK inhibitor is still an open task.
Abstract: The c-Jun N-terminal kinases (JNKs) are serine/threonine kinases implicated in the pathogenesis of various diseases. Recent advances in the development of novel inhibitors of JNKs will be reviewed. Significant progress in the design of JNK inhibitors displaying selectivity versus other kinases has been achieved within the past 4 years. However, the development of isoform selective JNK inhibitors is still an open task.

83 citations

Journal ArticleDOI
TL;DR: It is shown that mycolactone acts as an inhibitor of the mechanistic Target of Rapamycin (mTOR) signaling pathway by interfering with the assembly of the two distinct mTOR protein complexes mTORC1 and m TORC2, which regulate different cellular processes.
Abstract: Mycolactone, the macrolide exotoxin produced by Mycobacterium ulcerans, is central to the pathogenesis of the chronic necrotizing skin disease Buruli ulcer (BU). Here we show that mycolactone acts as an inhibitor of the mechanistic Target of Rapamycin (mTOR) signaling pathway by interfering with the assembly of the two distinct mTOR protein complexes mTORC1 and mTORC2, which regulate different cellular processes. Inhibition of the assembly of the rictor containing mTORC2 complex by mycolactone prevents phosphorylation of the serine/threonine protein kinase Akt. The associated inactivation of Akt leads to the dephosphorylation and activation of the Akt-targeted transcription factor FoxO3. Subsequent up-regulation of the FoxO3 target gene BCL2L11 (Bim) increases expression of the pro-apoptotic regulator Bim, driving mycolactone treated mammalian cells into apoptosis. The central role of Bim-dependent apoptosis in BU pathogenesis deduced from our experiments with cultured mammalian cells was further verified...

60 citations

Journal ArticleDOI
TL;DR: This review summarizes patents claiming inhibitors of all JNK isoforms published between 2010 and 2014 and highlights a total of 28 patents from nine pharmaceutical companies and academic research groups.
Abstract: Introduction: c-Jun N-terminal kinases (JNKs) are involved in the emergence and progression of diverse pathologies such as neurodegenerative, cardiovascular and metabolic disorders as well as inflammation and cancer. In recent years, several highly selective pan-JNK inhibitors have been characterized and three chemical entities targeting JNKs have been investigated in clinical trials.Areas covered: This review summarizes patents claiming inhibitors of all JNK isoforms published between 2010 and 2014. Although primarily focusing on the patent literature, relevant peer-reviewed publications related to the covered patents have also been included. Moreover, key patents claiming novel applications of previously published chemical entities are reviewed. The article highlights a total of 28 patents from nine pharmaceutical companies and academic research groups.Expert opinion: Although some selective pan-JNK inhibitors with reasonable in vivo profiles are now available, little is known about the isoform selectiv...

48 citations


Cited by
More filters
Journal ArticleDOI
10 Mar 1970

8,159 citations

Journal ArticleDOI
TL;DR: All approved small-molecule kinase inhibitors with an emphasis on binding mechanism and structural features are presented, current challenges are summarized, and future directions in this field are discussed.

793 citations

Journal ArticleDOI
TL;DR: An overview of the novel targets, biological processes and disease areas that kinase-targeting small molecules are being developed against, highlight the associated challenges and assess the strategies and technologies that are enabling efficient generation of highly optimized kinase inhibitors are provided.
Abstract: Receptor tyrosine kinase signalling pathways have been successfully targeted to inhibit proliferation and angiogenesis for cancer therapy. However, kinase deregulation has been firmly demonstrated to play an essential role in virtually all major disease areas. Kinase inhibitor drug discovery programmes have recently broadened their focus to include an expanded range of kinase targets and therapeutic areas. In this Review, we provide an overview of the novel targets, biological processes and disease areas that kinase-targeting small molecules are being developed against, highlight the associated challenges and assess the strategies and technologies that are enabling efficient generation of highly optimized kinase inhibitors.

620 citations

Journal ArticleDOI
TL;DR: How drugs that target RAS or associated pathways might be used effectively, particularly in combinations, are explored, and other RAS-targeted therapies in the pipeline are discussed, including combination strategies.
Abstract: RAS (KRAS, NRAS and HRAS) is the most frequently mutated gene family in cancers, and, consequently, investigators have sought an effective RAS inhibitor for more than three decades. Even 10 years ago, RAS inhibitors were so elusive that RAS was termed ‘undruggable’. Now, with the success of allele-specific covalent inhibitors against the most frequently mutated version of RAS in non-small-cell lung cancer, KRASG12C, we have the opportunity to evaluate the best therapeutic strategies to treat RAS-driven cancers. Mutation-specific biochemical properties, as well as the tissue of origin, are likely to affect the effectiveness of such treatments. Currently, direct inhibition of mutant RAS through allele-specific inhibitors provides the best therapeutic approach. Therapies that target RAS-activating pathways or RAS effector pathways could be combined with these direct RAS inhibitors, immune checkpoint inhibitors or T cell-targeting approaches to treat RAS-mutant tumours. Here we review recent advances in therapies that target mutant RAS proteins and discuss the future challenges of these therapies, including combination strategies. RAS proteins, which are frequently altered in cancer, were once considered undruggable, but compounds targeting some mutant RAS proteins have recently demonstrated clinical efficacy. In this Review, Malek and colleagues explore how these and other drugs that target RAS or associated pathways might be used effectively, particularly in combinations, and discuss other RAS-targeted therapies in the pipeline.

459 citations

Journal ArticleDOI
TL;DR: An overview of warheads-beyond α,β-unsaturated amides-recently used in the design of targeted covalent ligands is provided, with special emphasis on the discussion of reactivity and of case studies illustrating applications in medicinal chemistry and chemical biology.
Abstract: Targeted covalent inhibitors (TCIs) are designed to bind poorly conserved amino acids by means of reactive groups, the so-called warheads. Currently, targeting noncatalytic cysteine residues with acrylamides and other α,β-unsaturated carbonyl compounds is the predominant strategy in TCI development. The recent ascent of covalent drugs has stimulated considerable efforts to characterize alternative warheads for the covalent-reversible and irreversible engagement of noncatalytic cysteine residues as well as other amino acids. This Perspective article provides an overview of warheads—beyond α,β-unsaturated amides—recently used in the design of targeted covalent ligands. Promising reactive groups that have not yet demonstrated their utility in TCI development are also highlighted. Special emphasis is placed on the discussion of reactivity and of case studies illustrating applications in medicinal chemistry and chemical biology.

349 citations