scispace - formally typeset
Search or ask a question

Showing papers by "Matthias Meyer published in 2020"


Journal ArticleDOI
TL;DR: The genome of a Neandertal from Chagyrskaya Cave in the Altai Mountains, Russia, is sequenced to 27-fold genomic coverage and it is found that genes highly expressed in the Striatum in the basal ganglia of the brain carry more amino-acid-changing substitutions than genes expressed elsewhere in the brain, suggesting that the striatum may have evolved unique functions in NeandERTals.
Abstract: We sequenced the genome of a Neandertal from Chagyrskaya Cave in the Altai Mountains, Russia, to 27-fold genomic coverage. We show that this Neandertal was a female and that she was more related to Neandertals in western Eurasia [Prufer et al., Science 358, 655-658 (2017); Hajdinjak et al., Nature 555, 652-656 (2018)] than to Neandertals who lived earlier in Denisova Cave [Prufer et al., Nature 505, 43-49 (2014)], which is located about 100 km away. About 12.9% of the Chagyrskaya genome is spanned by homozygous regions that are between 2.5 and 10 centiMorgans (cM) long. This is consistent with the fact that Siberian Neandertals lived in relatively isolated populations of less than 60 individuals. In contrast, a Neandertal from Europe, a Denisovan from the Altai Mountains, and ancient modern humans seem to have lived in populations of larger sizes. The availability of three Neandertal genomes of high quality allows a view of genetic features that were unique to Neandertals and that are likely to have been at high frequency among them. We find that genes highly expressed in the striatum in the basal ganglia of the brain carry more amino-acid-changing substitutions than genes expressed elsewhere in the brain, suggesting that the striatum may have evolved unique functions in Neandertals.

156 citations


Journal ArticleDOI
11 May 2020-Nature
TL;DR: Direct dates for human remains found in association with Initial Upper Palaeolithic artefacts at Bacho Kiro Cave (Bulgaria) demonstrate the presence of Homo sapiens in the mid-latitudes of Europe before 45 thousand years ago.
Abstract: The Middle to Upper Palaeolithic transition in Europe witnessed the replacement and partial absorption of local Neanderthal populations by Homo sapiens populations of African origin1. However, this process probably varied across regions and its details remain largely unknown. In particular, the duration of chronological overlap between the two groups is much debated, as are the implications of this overlap for the nature of the biological and cultural interactions between Neanderthals and H. sapiens. Here we report the discovery and direct dating of human remains found in association with Initial Upper Palaeolithic artefacts2, from excavations at Bacho Kiro Cave (Bulgaria). Morphological analysis of a tooth and mitochondrial DNA from several hominin bone fragments, identified through proteomic screening, assign these finds to H. sapiens and link the expansion of Initial Upper Palaeolithic technologies with the spread of H. sapiens into the mid-latitudes of Eurasia before 45 thousand years ago3. The excavations yielded a wealth of bone artefacts, including pendants manufactured from cave bear teeth that are reminiscent of those later produced by the last Neanderthals of western Europe4–6. These finds are consistent with models based on the arrival of multiple waves of H. sapiens into Europe coming into contact with declining Neanderthal populations7,8. Direct dates for human remains found in association with Initial Upper Palaeolithic artefacts at Bacho Kiro Cave (Bulgaria) demonstrate the presence of Homo sapiens in the mid-latitudes of Europe before 45 thousand years ago.

141 citations


Journal ArticleDOI
TL;DR: An updated protocol for single-stranded sequencing library preparation suitable for highly degraded DNA from ancient remains or other sources is presented, which can be performed manually or in an automated fashion.
Abstract: It has been shown that highly fragmented DNA is most efficiently converted into DNA libraries for sequencing if both strands of the DNA fragments are processed independently We present an updated protocol for library preparation from single-stranded DNA, which is based on the splinted ligation of an adapter oligonucleotide to the 3′ ends of single DNA strands, the synthesis of a complementary strand using a DNA polymerase and the addition of a 5′ adapter via blunt-end ligation The efficiency of library preparation is determined individually for each sample using a spike-in oligonucleotide The whole workflow, including library preparation, quantification and amplification, requires two work days for up to 16 libraries Alternatively, we provide documentation and electronic protocols enabling automated library preparation of 96 samples in parallel on a Bravo NGS Workstation (Agilent Technologies) After library preparation, molecules with uninformative short inserts (shorter than ~30−35 base pairs) can be removed by polyacrylamide gel electrophoresis if desired Here the authors describe an updated protocol for single-stranded sequencing library preparation suitable for highly degraded DNA from ancient remains or other sources The procedure can be performed manually or in an automated fashion

81 citations


Journal ArticleDOI
30 Oct 2020-Science
TL;DR: The long-term occupation of BKC by Denisovans suggests that they may have adapted to life at high altitudes and may have contributed such adaptations to modern humans on the Tibetan Plateau.
Abstract: A late Middle Pleistocene mandible from Baishiya Karst Cave (BKC) on the Tibetan Plateau has been inferred to be from a Denisovan, an Asian hominin related to Neanderthals, on the basis of an amino acid substitution in its collagen. Here we describe the stratigraphy, chronology, and mitochondrial DNA extracted from the sediments in BKC. We recover Denisovan mitochondrial DNA from sediments deposited ~100 thousand and ~60 thousand years ago (ka) and possibly as recently as ~45 ka. The long-term occupation of BKC by Denisovans suggests that they may have adapted to life at high altitudes and may have contributed such adaptations to modern humans on the Tibetan Plateau.

79 citations


Journal ArticleDOI
TL;DR: Ancient Salmonella enterica genomes from Neolithic Eurasian humans compared with those from later archaeological contexts illuminate the evolving host specificity of the pathogen from an initial multi-mammalian adaptation towards an increasingly human specialization.
Abstract: It has been hypothesized that the Neolithic transition towards an agricultural and pastoralist economy facilitated the emergence of human-adapted pathogens. Here, we recovered eight Salmonella enterica subsp. enterica genomes from human skeletons of transitional foragers, pastoralists and agropastoralists in western Eurasia that were up to 6,500 yr old. Despite the high genetic diversity of S. enterica, all ancient bacterial genomes clustered in a single previously uncharacterized branch that contains S. enterica adapted to multiple mammalian species. All ancient bacterial genomes from prehistoric (agro-)pastoralists fall within a part of this branch that also includes the human-specific S. enterica Paratyphi C, illustrating the evolution of a human pathogen over a period of 5,000 yr. Bacterial genomic comparisons suggest that the earlier ancient strains were not host specific, differed in pathogenic potential and experienced convergent pseudogenization that accompanied their downstream host adaptation. These observations support the concept that the emergence of human-adapted S. enterica is linked to human cultural transformations.

61 citations


Journal ArticleDOI
25 Sep 2020-Science
TL;DR: Comparisons with available archaic and diverse modern human Y chromosomes indicated that, similar to the maternally inherited mitochondria, the human and Neanderthal Y chromosomes were more closely related to each other compared with the Denisovan Y chromosome, which supports the conclusion that interbreeding between early humans and Neanderthals and selection replaced the more ancient Denisovian-like Y chromosome and mitochondria in Neanderthal.
Abstract: Ancient DNA has provided new insights into many aspects of human history. However, we lack comprehensive studies of the Y chromosomes of Denisovans and Neanderthals because the majority of specimens that have been sequenced to sufficient coverage are female. Sequencing Y chromosomes from two Denisovans and three Neanderthals shows that the Y chromosomes of Denisovans split around 700 thousand years ago from a lineage shared by Neanderthals and modern human Y chromosomes, which diverged from each other around 370 thousand years ago. The phylogenetic relationships of archaic and modern human Y chromosomes differ from the population relationships inferred from the autosomal genomes and mirror mitochondrial DNA phylogenies, indicating replacement of both the mitochondrial and Y chromosomal gene pools in late Neanderthals. This replacement is plausible if the low effective population size of Neanderthals resulted in an increased genetic load in Neanderthals relative to modern humans.

57 citations


Journal ArticleDOI
30 Oct 2020-Science
TL;DR: It is shown that this individual was a female member of a modern human population that, following the split between East and West Eurasians, experienced substantial gene flow from West Eurasia, and both she and a 40,000-year-old individual from Tianyuan outside Beijing carried genomic segments of Denisovan ancestry.
Abstract: We present analyses of the genome of a ~34,000-year-old hominin skull cap discovered in the Salkhit Valley in northeastern Mongolia. We show that this individual was a female member of a modern human population that, following the split between East and West Eurasians, experienced substantial gene flow from West Eurasians. Both she and a 40,000-year-old individual from Tianyuan outside Beijing carried genomic segments of Denisovan ancestry. These segments derive from the same Denisovan admixture event(s) that contributed to present-day mainland Asians but are distinct from the Denisovan DNA segments in present-day Papuans and Aboriginal Australians.

46 citations


Journal ArticleDOI
TL;DR: This study presents a survey of human aDNA preservation for each of ten skeletal elements in a skeletal collection from Medieval Germany and identifies seven additional sampling locations across four skeletal elements that yield adequate aDNA for most applications in human palaeogenetics.
Abstract: Ancient DNA (aDNA) analyses necessitate the destructive sampling of archaeological material. Currently, the cochlea, part of the osseous inner ear located inside the petrous pyramid, is the most sought after skeletal element for molecular analyses of ancient humans as it has been shown to yield high amounts of endogenous DNA. However, destructive sampling of the petrous pyramid may not always be possible, particularly in cases where preservation of skeletal morphology is of top priority. To investigate alternatives, we present a survey of human aDNA preservation for each of ten skeletal elements in a skeletal collection from Medieval Germany. Through comparison of human DNA content and quality we confirm best performance of the petrous pyramid and identify seven additional sampling locations across four skeletal elements that yield adequate aDNA for most applications in human palaeogenetics. Our study provides a better perspective on DNA preservation across the human skeleton and takes a further step toward the more responsible use of ancient materials in human aDNA studies.

34 citations


Journal ArticleDOI
TL;DR: A pit was dug in a sterile sediment layer and the corpse of a two-year-old child was laid there, and a hominin bone from this context yielded a direct 14C age of 41.7–40.8 ka cal BP, making the bone one of the most recent directly dated Neandertals.
Abstract: The origin of funerary practices has important implications for the emergence of so-called modern cognitive capacities and behaviour. We provide new multidisciplinary information on the archaeological context of the La Ferrassie 8 Neandertal skeleton (grand abri of La Ferrassie, Dordogne, France), including geochronological data -14C and OSL-, ZooMS and ancient DNA data, geological and stratigraphic information from the surrounding context, complete taphonomic study of the skeleton and associated remains, spatial information from the 1968–1973 excavations, and new (2014) fieldwork data. Our results show that a pit was dug in a sterile sediment layer and the corpse of a two-year-old child was laid there. A hominin bone from this context, identified through Zooarchaeology by Mass Spectrometry (ZooMS) and associated with Neandertal based on its mitochondrial DNA, yielded a direct 14C age of 41.7–40.8 ka cal BP (95%), younger than the 14C dates of the overlying archaeopaleontological layers and the OSL age of the surrounding sediment. This age makes the bone one of the most recent directly dated Neandertals. It is consistent with the age range for the Châtelperronian in the site and in this region and represents the third association of Neandertal taxa to Initial Upper Palaeolithic lithic technocomplex in Western Europe. A detailed multidisciplinary approach, as presented here, is essential to advance understanding of Neandertal behavior, including funerary practices.

25 citations


Journal ArticleDOI
TL;DR: Analysis of mitochondrial genomes from ∼20 macaque species further characterize macaque evolution before and after modern human dispersal throughout Southeast Asia and point to possible effects on biodiversity of ancient human cultural diasporas.

19 citations


Journal ArticleDOI
TL;DR: The findings demonstrate that the developmental control of sexual differentiation changed via loss, sidelining, and empowerment of a mechanistically influential gene, and offer insights into novel factors that impinge on the diverse evolutionary fates of sex chromosomes.
Abstract: Phenotypic invariance-the outcome of purifying selection-is a hallmark of biological importance. However, invariant phenotypes might be controlled by diverged genetic systems in different species. Here, we explore how an important and invariant phenotype-the development of sexually differentiated individuals-is controlled in over two dozen species in the frog family Pipidae. We uncovered evidence in different species for 1) an ancestral W chromosome that is not found in many females and is found in some males, 2) independent losses and 3) autosomal segregation of this W chromosome, 4) changes in male versus female heterogamy, and 5) substantial variation among species in recombination suppression on sex chromosomes. We further provide evidence of, and evolutionary context for, the origins of at least seven distinct systems for regulating sex determination among three closely related genera. These systems are distinct in their genomic locations, evolutionary origins, and/or male versus female heterogamy. Our findings demonstrate that the developmental control of sexual differentiation changed via loss, sidelining, and empowerment of a mechanistically influential gene, and offer insights into novel factors that impinge on the diverse evolutionary fates of sex chromosomes.

Posted ContentDOI
13 Mar 2020-bioRxiv
TL;DR: The genome of a Neandertal from Chagyrskaya Cave in the Altai Mountains, Russia, is sequenced to 27-fold genomic coverage and it is found that genes highly expressed in the striatum in the basal ganglia of the brain carry more amino acid-changing substitutions than genes expressed elsewhere in the brain, suggesting that thestriatum may have evolved unique functions in NeandERTals.
Abstract: We sequenced the genome of a Neandertal from Chagyrskaya Cave in the Altai Mountains, Russia, to 27-fold genomic coverage. We estimate that this individual lived ~80,000 years ago and was more closely related to Neandertals in western Eurasia (1,2) than to Neandertals who lived earlier in Denisova Cave (3), which is located about 100 km away. About 12.9% of the Chagyrskaya genome is spanned by homozygous regions that are between 2.5 and 10 centiMorgans (cM) long. This is consistent with that Siberian Neandertals lived in relatively isolated populations of less than 60 individuals. In contrast, a Neandertal from Europe, a Denisovan from the Altai Mountains and ancient modern humans seem to have lived in populations of larger sizes. The availability of three Neandertal genomes of high quality allows a first view of genetic features that were unique to Neandertals and that are likely to have been at high frequency among them. We find that genes highly expressed in the striatum in the basal ganglia of the brain carry more amino acid-changing substitutions than genes expressed elsewhere in the brain, suggesting that the striatum may have evolved unique functions in Neandertals.

Journal ArticleDOI
31 Dec 2020-PLOS ONE
TL;DR: A cheap and fast approach to detect SARS-CoV-2 in single or pooled gargle lavages ('mouthwashes') is presented and this or similar approaches could be implemented to protect hospitals, nursing homes and other institutions in this and future viral epidemics.
Abstract: SARS-CoV-2 causes substantial morbidity and mortality in elderly and immunocompromised individuals, particularly in retirement homes, where transmission from asymptomatic staff and visitors may introduce the infection Here we present a cheap and fast screening method based on direct RT-qPCR to detect SARS-CoV-2 in single or pooled gargle lavages ("mouthwashes") This method detects individuals with large viral loads (Ct≤29) and we use it to test all staff at a nursing home daily over a period of three weeks in order to reduce the risk that the infection penetrates the facility This or similar approaches can be implemented to protect hospitals, nursing homes and other institutions in this and future viral epidemics

Journal ArticleDOI
TL;DR: The method enables fast, cost‐efficient, large‐scale integration of contemporary and historical specimens for assessment of genome‐wide genetic trends over time, independent of genome size and presence of a reference genome.
Abstract: Species' responses at the genetic level are key to understanding the long-term consequences of anthropogenic global change. Herbaria document such responses, and, with contemporary sampling, provide high-resolution time-series of plant evolutionary change. Characterizing genetic diversity is straightforward for model species with small genomes and a reference sequence. For nonmodel species-with small or large genomes-diversity is traditionally assessed using restriction-enzyme-based sequencing. However, age-related DNA damage and fragmentation preclude the use of this approach for ancient herbarium DNA. Here, we combine reduced-representation sequencing and hybridization-capture to overcome this challenge and efficiently compare contemporary and historical specimens. Specifically, we describe how homemade DNA baits can be produced from reduced-representation libraries of fresh samples, and used to efficiently enrich historical libraries for the same fraction of the genome to produce compatible sets of sequence data from both types of material. Applying this approach to both Arabidopsis thaliana and the nonmodel plant Cardamine bulbifera, we discovered polymorphisms de novo in an unbiased, reference-free manner. We show that the recovered genetic variation recapitulates known genetic diversity in A. thaliana, and recovers geographical origin in both species and over time, independent of bait diversity. Hence, our method enables fast, cost-efficient, large-scale integration of contemporary and historical specimens for assessment of genome-wide genetic trends over time, independent of genome size and presence of a reference genome.

Posted ContentDOI
14 Oct 2020-bioRxiv
TL;DR: Ancient DNA data from Guam is analyzed, and it is found that the early Mariana Islanders may have been involved in the colonization of Polynesia, suggesting that the Marianas and Polynesia were colonized from the same source population.
Abstract: Humans reached the Mariana Islands in the western Pacific by ~3500 years ago, contemporaneous with or even earlier than the initial peopling of Polynesia. They crossed more than 2000 km of open ocean to get there, whereas voyages of similar length did not occur anywhere else until more than 2000 years later. Yet, the settlement of Polynesia has received far more attention than the settlement of the Marianas. There is uncertainty over both the origin of the first colonizers of the Marianas (with different lines of evidence suggesting variously the Philippines, Indonesia, New Guinea, or the Bismarck Archipelago) as well as what, if any, relationship they might have had with the first colonizers of Polynesia. To address these questions, we obtained ancient DNA data from two skeletons from the Ritidian Beach Cave site in northern Guam, dating to ~2200 years ago. Analyses of complete mtDNA genome sequences and genome-wide SNP data strongly support ancestry from the Philippines, in agreement with some interpretations of the linguistic and archaeological evidence, but in contradiction to results based on computer simulations of sea voyaging. We also find a close link between the ancient Guam skeletons and early Lapita individuals from Vanuatu and Tonga, suggesting that the Marianas and Polynesia were colonized from the same source population, and raising the possibility that the Marianas played a role in the eventual settlement of Polynesia.


Journal ArticleDOI
TL;DR: Novel and direct evidence of the late Neanderthal occupation in northern Italy that preceded the marked cultural and technological shift documented by the Uluzzian layers in the archaeological sequence at Riparo Broion is described.

Posted ContentDOI
12 Mar 2020-bioRxiv
TL;DR: Genome-wide and isotopic data from prehistoric Sicilians reveal a pre-farming connection to (south-) eastern Europe, and tentative initial evidence that hunter-gatherers adopted some Neolithic aspects prior to near-total replacement by early farmers.
Abstract: Southern Italy is a key region for understanding the agricultural transition in the Mediterranean due to its central position. We present a genomic transect for 19 prehistoric Sicilians that covers the Early Mesolithic to Early Neolithic period. We find that the Early Mesolithic hunter-gatherers (HGs) are a highly drifted sister lineage to Early Holocene western European HGs, whereas a quarter of the Late Mesolithic HGs ancestry is related to HGs from eastern Europe and the Near East. This indicates substantial gene flow from (south-)eastern Europe between the Early and Late Mesolithic. The Early Neolithic farmers are genetically most similar to those from the Balkan and Greece, and carry only a maximum of ~7% ancestry from Sicilian Mesolithic HGs. Ancestry changes match changes in dietary profile and material culture, except for two individuals who may provide tentative initial evidence that HGs adopted elements of farming in Sicily.

Journal ArticleDOI
TL;DR: It is shown that sequencing DNA libraries enriched in molecules carrying uracils effectively amplifies age associated degradation patterns in microbial mixtures of ancient and historical origin, and that the selective enrichment of damaged DNA molecules can be a valuable tool in the discovery of ancient microbial taxa.
Abstract: The identification of bona fide microbial taxa in microbiomes derived from ancient and historical samples is complicated by the unavoidable mixture between DNA from ante- and post-mortem microbial colonizers One possibility to distinguish between these sources of microbial DNA is querying for the presence of age-associated degradation patterns typical of ancient DNA (aDNA) The presence of uracils, resulting from cytosine deamination, has been detected ubiquitously in aDNA retrieved from diverse sources, and used as an authentication criterion Here, we employ a library preparation method that separates molecules that carry uracils from those that do not for a set of samples that includes Neandertal remains, herbarium specimens and archaeological plant remains We show that sequencing DNA libraries enriched in molecules carrying uracils effectively amplifies age associated degradation patterns in microbial mixtures of ancient and historical origin This facilitates the discovery of authentic ancient microbial taxa in cases where degradation patterns are difficult to detect due to large sequence divergence in microbial mixtures Additionally, the relative enrichment of taxa in the uracil enriched fraction can help to identify bona fide ancient microbial taxa that could be missed using a more targeted approach Our experiments show, that in addition to its use in enriching authentic endogenous DNA of organisms of interest, the selective enrichment of damaged DNA molecules can be a valuable tool in the discovery of ancient microbial taxa

Posted ContentDOI
26 Jun 2020-medRxiv
TL;DR: In this paper, the authors presented a cheap and fast approach to detect SARS-CoV-2 in single or pooled gargle lavages (mouthwashes) in a nursing home.
Abstract: SARS-CoV-2 causes substantial morbidity and mortality in elderly and immunocompromised individuals, particularly in retirement homes, where transmission from asymptomatic staff and visitors may introduce the infection. Here we present a cheap and fast approach to detect SARS-CoV-2 in single or pooled gargle lavages (“mouthwashes”). With this approach, we test all staff at a nursing home daily over a period of three weeks in order to reduce the risk that the infection penetrates the facility. This or similar approaches could be implemented to protect hospitals, nursing homes and other institutions in this and future viral epidemics.

Journal ArticleDOI
TL;DR: The application of MatchSeq to Neanderthal DNA, a particularly complex source of degraded DNA, reveals that 1- or 2-nt overhangs and blunt ends dominate the ends of ancient DNA molecules and that short gaps exist, which are predominantly caused by the loss of individual purines.
Abstract: Extensive manipulations involved in the preparation of DNA samples for sequencing have hitherto made it impossible to determine the precise structure of double-stranded DNA fragments being sequenced, such as the presence of blunt ends, single-stranded overhangs, or single-strand breaks. We here describe MatchSeq, a method that combines single-stranded DNA library preparation from diluted DNA samples with computational sequence matching, allowing the reconstruction of double-stranded DNA fragments on a single-molecule level. The application of MatchSeq to Neanderthal DNA, a particularly complex source of degraded DNA, reveals that 1- or 2-nt overhangs and blunt ends dominate the ends of ancient DNA molecules and that short gaps exist, which are predominantly caused by the loss of individual purines. We further show that deamination of cytosine to uracil occurs in both single- and double-stranded contexts close to the ends of molecules, and that single-stranded parts of DNA fragments are enriched in pyrimidines. MatchSeq provides unprecedented resolution for interrogating the structures of fragmented double-stranded DNA and can be applied to fragmented double-stranded DNA isolated from any biological source. The method relies on well-established laboratory techniques and can easily be integrated into routine data generation. This possibility is shown by the successful reconstruction of double-stranded DNA fragments from previously published single-stranded sequence data, allowing a more comprehensive characterization of the biochemical properties not only of ancient DNA but also of cell-free DNA from human blood plasma, a clinically relevant marker for the diagnosis and monitoring of disease.

Posted ContentDOI
22 May 2020-bioRxiv
TL;DR: This study presents a survey of human aDNA preservation for each of ten skeletal elements in a skeletal collection from Medieval Germany and identifies seven additional sampling locations across four skeletal elements that yield adequate aDNA for most applications in human palaeogenetics.
Abstract: Ancient DNA (aDNA) analyses necessitate the destructive sampling of archaeological material. Currently the dense inner portion of the petrous pyramid, the location of the skull that houses the inner ear, is the most sought after skeletal element for molecular analyses of ancient humans as it has been shown to yield high amounts of endogenous DNA. Destructive sampling of the petrous pyramid, assuming its recovery, is often not recommended for highly valued specimens. To investigate alternatives, we present a survey of human aDNA preservation for each of ten skeletal elements in a skeletal collection from Medieval Germany. Through comparison of human DNA content and quality we confirm best performance of the petrous pyramid and identify seven additional sampling locations across four skeletal elements that yield adequate aDNA for most applications in human palaeogenetics. Our study provides a better perspective on DNA preservation across the human skeleton and takes a further step toward the more responsible use of ancient materials in human aDNA studies.

Posted ContentDOI
09 Mar 2020-bioRxiv
TL;DR: It is found that the Denisovan Y chromosomes split around 700 thousand years ago from a lineage shared by Neandertal and modern human Y chromosomes, which diverged from each other around 370 kya, providing strong evidence that gene flow from an early lineage related to modern humans resulted in the replacement of both the mitochondrial and Y chromosomal gene pools in lateNeandertals.
Abstract: Ancient DNA has allowed the study of various aspects of human history in unprecedented detail. However, because the majority of archaic human specimens preserved well enough for genome sequencing have been female, comprehensive studies of Y chromosomes of Denisovans and Neandertals have not yet been possible. Here we present sequences of the first Denisovan Y chromosomes (Denisova 4 and Denisova 8), as well as the Y chromosomes of three late Neandertals (Spy 94a, Mezmaiskaya 2 and El Sidron 1253). We find that the Denisovan Y chromosomes split around 700 thousand years ago (kya) from a lineage shared by Neandertal and modern human Y chromosomes, which diverged from each other around 370 kya. The phylogenetic relationships of archaic and modern human Y chromosomes therefore differ from population relationships inferred from their autosomal genomes, and mirror the relationships observed on the level of mitochondrial DNA. This provides strong evidence that gene flow from an early lineage related to modern humans resulted in the replacement of both the mitochondrial and Y chromosomal gene pools in late Neandertals. Although unlikely under neutrality, we show that this replacement is plausible if the low effective population size of Neandertals resulted in an increased genetic load in their Y chromosomes and mitochondrial DNA relative to modern humans.

Posted ContentDOI
06 Aug 2020-medRxiv
TL;DR: This method combines a hybridization capture-based RNA extraction of non-invasive gargle lavage samples to concentrate samples and remove inhibitors with an improved colorimetric RT-LAMP assay and smartphone-based color scoring and enables the detection of SARS-CoV-2 positive samples in less than one hour.
Abstract: Efforts to contain the spread of SARS-CoV-2 have spurred the need for reliable, rapid, and cost-effective diagnostic methods which can easily be applied to large numbers of people. However, current standard protocols for the detection of viral nucleic acids while sensitive, require a high level of automation, sophisticated laboratory equipment and trained personnel to achieve throughputs that allow whole communities to be tested on a regular basis. Here we present Cap-iLAMP (capture and improved loop-mediated isothermal amplification). This method combines a hybridization capture-based RNA extraction of non-invasive gargle lavage samples to concentrate samples and remove inhibitors with an improved colorimetric RT-LAMP assay and smartphone-based color scoring. Cap-iLAMP is compatible with point-of-care testing and enables the detection of SARS-CoV-2 positive samples in less than one hour. In contrast to direct addition of the sample to improved LAMP (iLAMP), Cap-iLAMP does not result in false positives and single infected samples can be detected in a pool among 25 uninfected samples, thus reducing the technical cost per test to ~1 Euro per individual.

Posted ContentDOI
03 Jun 2020-bioRxiv
TL;DR: Analysis of the genome of a ~34,000-year-old hominin skull cap discovered in the Salkhit Valley in North East Mongolia shows that this individual was a female member of a modern human population that, following the split between East and West Eurasian, experienced substantial gene flow from West Eurasians.
Abstract: We present analyses of the genome of a ~34,000-year-old hominin skull cap discovered in the Salkhit Valley in North East Mongolia. We show that this individual was a female member of a modern human population that, following the split between East and West Eurasians, experienced substantial gene flow from West Eurasians. Both she and a 40,000-year-old individual from Tianyuan outside Beijing carried genomic segments of Denisovan ancestry. These segments derive from the same Denisovan admixture event(s) that contributed to present-day mainland Asians but are distinct from the Denisovan DNA segments in present-day Papuans and Aboriginal Australians.