scispace - formally typeset
Search or ask a question

Showing papers by "Matthias Meyer published in 2021"


Journal ArticleDOI
07 Apr 2021-Nature
TL;DR: The earliest known modern human remains from Bacho Kiro Cave, Bulgaria, date to around 45,930 and 42,580 years ago, and were found in association with an Initial Upper Palaeolithic artefact assemblage.
Abstract: Modern humans appeared in Europe by at least 45,000 years ago1–5, but the extent of their interactions with Neanderthals, who disappeared by about 40,000 years ago6, and their relationship to the broader expansion of modern humans outside Africa are poorly understood. Here we present genome-wide data from three individuals dated to between 45,930 and 42,580 years ago from Bacho Kiro Cave, Bulgaria1,2. They are the earliest Late Pleistocene modern humans known to have been recovered in Europe so far, and were found in association with an Initial Upper Palaeolithic artefact assemblage. Unlike two previously studied individuals of similar ages from Romania7 and Siberia8 who did not contribute detectably to later populations, these individuals are more closely related to present-day and ancient populations in East Asia and the Americas than to later west Eurasian populations. This indicates that they belonged to a modern human migration into Europe that was not previously known from the genetic record, and provides evidence that there was at least some continuity between the earliest modern humans in Europe and later people in Eurasia. Moreover, we find that all three individuals had Neanderthal ancestors a few generations back in their family history, confirming that the first European modern humans mixed with Neanderthals and suggesting that such mixing could have been common. Genome-wide data for the three oldest known modern human remains in Europe, dated to around 45,000 years ago, shed light on early human migrations in Europe and suggest that mixing with Neanderthals was more common than is often assumed.

81 citations


Journal ArticleDOI
TL;DR: Cap-iLAMP as discussed by the authors combines a hybridization capture-based RNA extraction of gargle lavage samples with an improved colorimetric RT-LAMP assay and smartphone-based color scoring.
Abstract: Efforts to contain the spread of SARS-CoV-2 have spurred the need for reliable, rapid, and cost-effective diagnostic methods which can be applied to large numbers of people. However, current standard protocols for the detection of viral nucleic acids while sensitive, require a high level of automation and sophisticated laboratory equipment to achieve throughputs that allow whole communities to be tested on a regular basis. Here we present Cap-iLAMP (capture and improved loop-mediated isothermal amplification) which combines a hybridization capture-based RNA extraction of gargle lavage samples with an improved colorimetric RT-LAMP assay and smartphone-based color scoring. Cap-iLAMP is compatible with point-of-care testing and enables the detection of SARS-CoV-2 positive samples in less than one hour. In contrast to direct addition of the sample to improved LAMP (iLAMP), Cap-iLAMP prevents false positives and allows single positive samples to be detected in pools of 25 negative samples, reducing the reagent cost per test to ~1 Euro per individual.

68 citations


Journal ArticleDOI
07 May 2021-Science
TL;DR: In this article, the population history of ancient hominins from trace amounts of nuclear DNA in sediments has been studied and two radiation events in Neanderthal history during the early part of the Late Pleistocene were identified.
Abstract: Bones and teeth are important sources of Pleistocene hominin DNA, but are rarely recovered at archaeological sites. Mitochondrial DNA (mtDNA) has been retrieved from cave sediments but provides limited value for studying population relationships. We therefore developed methods for the enrichment and analysis of nuclear DNA from sediments and applied them to cave deposits in western Europe and southern Siberia dated to between 200,000 and 50,000 years ago. We detected a population replacement in northern Spain about 100,000 years ago, which was accompanied by a turnover of mtDNA. We also identified two radiation events in Neanderthal history during the early part of the Late Pleistocene. Our work lays the ground for studying the population history of ancient hominins from trace amounts of nuclear DNA in sediments.

52 citations


Journal ArticleDOI
23 Jun 2021-Nature
TL;DR: In this article, the authors reported the analysis of DNA from 728 sediment samples that were collected in a grid-like manner from layers dating to the Pleistocene epoch, revealing the sequence of Denisovan, Neanderthal and faunal occupation of Denisova Cave, and evidence for the appearance of modern humans at least 45,000 years ago.
Abstract: Denisova Cave in southern Siberia is the type locality of the Denisovans, an archaic hominin group who were related to Neanderthals1–4. The dozen hominin remains recovered from the deposits also include Neanderthals5,6 and the child of a Neanderthal and a Denisovan7, which suggests that Denisova Cave was a contact zone between these archaic hominins. However, uncertainties persist about the order in which these groups appeared at the site, the timing and environmental context of hominin occupation, and the association of particular hominin groups with archaeological assemblages5,8–11. Here we report the analysis of DNA from 728 sediment samples that were collected in a grid-like manner from layers dating to the Pleistocene epoch. We retrieved ancient faunal and hominin mitochondrial (mt)DNA from 685 and 175 samples, respectively. The earliest evidence for hominin mtDNA is of Denisovans, and is associated with early Middle Palaeolithic stone tools that were deposited approximately 250,000 to 170,000 years ago; Neanderthal mtDNA first appears towards the end of this period. We detect a turnover in the mtDNA of Denisovans that coincides with changes in the composition of faunal mtDNA, and evidence that Denisovans and Neanderthals occupied the site repeatedly—possibly until, or after, the onset of the Initial Upper Palaeolithic at least 45,000 years ago, when modern human mtDNA is first recorded in the sediments. Ancient mitochondrial DNA from sediments reveals the sequence of Denisovan, Neanderthal and faunal occupation of Denisova Cave, and evidence for the appearance of modern humans at least 45,000 years ago.

36 citations


Journal ArticleDOI
TL;DR: This article used a compound-specific approach that is today the most efficient in removing contamination and ancient genomic analysis, demonstrating that previous dates produced on Neanderthal specimens from Spy were inaccurately young by up to 10,000 y due to the presence of unremoved contamination.
Abstract: Elucidating when Neanderthal populations disappeared from Eurasia is a key question in paleoanthropology, and Belgium is one of the key regions for studying the Middle to Upper Paleolithic transition. Previous radiocarbon dating placed the Spy Neanderthals among the latest surviving Neanderthals in Northwest Europe with reported dates as young as 23,880 ± 240 B.P. (OxA-8912). Questions were raised, however, regarding the reliability of these dates. Soil contamination and carbon-based conservation products are known to cause problems during the radiocarbon dating of bulk collagen samples. Employing a compound-specific approach that is today the most efficient in removing contamination and ancient genomic analysis, we demonstrate here that previous dates produced on Neanderthal specimens from Spy were inaccurately young by up to 10,000 y due to the presence of unremoved contamination. Our compound-specific radiocarbon dates on the Neanderthals from Spy and those from Engis and Fonds-de-Foret demonstrate that they disappeared from Northwest Europe at 44,200 to 40,600 cal B.P. (at 95.4% probability), much earlier than previously suggested. Our data contribute significantly to refining models for Neanderthal disappearance in Europe and, more broadly, show that chronometric models regarding the appearance or disappearance of animal or hominin groups should be based only on radiocarbon dates obtained using robust pretreatment methods.

28 citations


Journal ArticleDOI
TL;DR: In this article, the authors obtained ancient DNA data from two skeletons from the Ritidian Beach Cave Site in northern Guam, dating to ∼2,200 y ago and found a close link between the ancient Guam skeletons and early Lapita individuals from Vanuatu and Tonga, suggesting that the Marianas and Polynesia were colonized from the same source population.
Abstract: Humans reached the Mariana Islands in the western Pacific by ∼3,500 y ago, contemporaneous with or even earlier than the initial peopling of Polynesia. They crossed more than 2,000 km of open ocean to get there, whereas voyages of similar length did not occur anywhere else until more than 2,000 y later. Yet, the settlement of Polynesia has received far more attention than the settlement of the Marianas. There is uncertainty over both the origin of the first colonizers of the Marianas (with different lines of evidence suggesting variously the Philippines, Indonesia, New Guinea, or the Bismarck Archipelago) as well as what, if any, relationship they might have had with the first colonizers of Polynesia. To address these questions, we obtained ancient DNA data from two skeletons from the Ritidian Beach Cave Site in northern Guam, dating to ∼2,200 y ago. Analyses of complete mitochondrial DNA genome sequences and genome-wide SNP data strongly support ancestry from the Philippines, in agreement with some interpretations of the linguistic and archaeological evidence, but in contradiction to results based on computer simulations of sea voyaging. We also find a close link between the ancient Guam skeletons and early Lapita individuals from Vanuatu and Tonga, suggesting that the Marianas and Polynesia were colonized from the same source population, and raising the possibility that the Marianas played a role in the eventual settlement of Polynesia.

17 citations


Journal ArticleDOI
TL;DR: In this article, the authors used collagen peptide mass fingerprinting to locate new hominin remains from Denisova Cave (Siberia, Russia) and identified five new homINin bones, four of which contained sufficient DNA for mitochondrial analysis.
Abstract: Since the initial identification of the Denisovans a decade ago, only a handful of their physical remains have been discovered. Here we analysed ~3,800 non-diagnostic bone fragments using collagen peptide mass fingerprinting to locate new hominin remains from Denisova Cave (Siberia, Russia). We identified five new hominin bones, four of which contained sufficient DNA for mitochondrial analysis. Three carry mitochondrial DNA of the Denisovan type and one was found to carry mtDNA of the Neanderthal type. The former come from the same archaeological layer near the base of the cave's sequence and are the oldest securely dated evidence of Denisovans at 200 ka (thousand years ago) (205-192 ka at 68.2% or 217-187 ka at 95% probability). The stratigraphic context in which they were located contains a wealth of archaeological material in the form of lithics and faunal remains, allowing us to determine the material culture associated with these early hominins and explore their behavioural and environmental adaptations. The combination of bone collagen fingerprinting and genetic analyses has so far more-than-doubled the number of hominin bones at Denisova Cave and has expanded our understanding of Denisovan and Neanderthal interactions, as well as their archaeological signatures.

9 citations


Posted ContentDOI
05 Nov 2021-bioRxiv
TL;DR: In this paper, the authors provided new insights into this region9s demographic history based on genome-wide data from 16 ancient individuals (2600-250 yrs BP) from islands of the North Moluccas, Sulawesi, and East Nusa Tenggara.
Abstract: Previous research indicates that the human genetic diversity found in Wallacea - islands in present-day Eastern Indonesia and Timor-Leste that were never part of the Sunda or Sahul continental shelves - has been shaped by complex interactions between migrating Austronesian farmers and indigenous hunter-gatherer communities. Here, we provide new insights into this region9s demographic history based on genome-wide data from 16 ancient individuals (2600-250 yrs BP) from islands of the North Moluccas, Sulawesi, and East Nusa Tenggara. While the ancestry of individuals from the northern islands fit earlier views of contact between groups related to the Austronesian expansion and the first colonization of Sahul, the ancestry of individuals from the southern islands revealed additional contributions from Mainland Southeast Asia, which seems to predate the Austronesian admixture in the region. Admixture time estimates for the oldest individuals of Wallacea are closer to archaeological estimates for the Austronesian arrival into the region than are admixture time estimates for present-day groups. The decreasing trend in admixture times exhibited by younger individuals supports a scenario of multiple or continuous admixture involving Papuan- and Asian-related groups. Our results clarify previously debated times of admixture and suggest that the Neolithic dispersals into Island Southeast Asia are associated with the spread of multiple genetic ancestries.

8 citations



Journal ArticleDOI
TL;DR: The idea that the discovery time of the Neanderthal bones impacts the results is not scientifically valid and indicates an incomplete review of the literature as discussed by the authors, which may reflect a misunderstanding of the stratigraphy at Spy Cave and/or incomplete reading of our article.
Abstract: Van Peer (1) contests the conclusions of our article on Neanderthal disappearance in Northwest Europe (2), but we think his argument may reflect a misunderstanding of the stratigraphy at Spy Cave and/or incomplete reading of our article. We provide here a response to his arguments. The idea that the discovery time of the Neanderthal bones impacts the results is not scientifically valid and indicates an incomplete review of the literature. Among the oldest radiocarbon dates obtained on the Spy Neanderthals are those measured on collagen from material collected on the slope: Spy 737a (OxA-10560) and Spy 94a (GrA-32623) (3, 4). In addition, although found on the slope, the maxillary … [↵][1]1To whom correspondence may be addressed. Email: deviese{at}cerege.fr or gregory.abrams{at}scladina.be. [1]: #xref-corresp-1-1