scispace - formally typeset
Search or ask a question
Author

Matthias Meyer

Bio: Matthias Meyer is an academic researcher from Max Planck Society. The author has contributed to research in topics: Ancient DNA & Population. The author has an hindex of 72, co-authored 170 publications receiving 31843 citations. Previous affiliations of Matthias Meyer include Lund University & MacDiarmid Institute for Advanced Materials and Nanotechnology.


Papers
More filters
Journal ArticleDOI
30 Oct 2020-Science
TL;DR: It is shown that this individual was a female member of a modern human population that, following the split between East and West Eurasians, experienced substantial gene flow from West Eurasia, and both she and a 40,000-year-old individual from Tianyuan outside Beijing carried genomic segments of Denisovan ancestry.
Abstract: We present analyses of the genome of a ~34,000-year-old hominin skull cap discovered in the Salkhit Valley in northeastern Mongolia. We show that this individual was a female member of a modern human population that, following the split between East and West Eurasians, experienced substantial gene flow from West Eurasians. Both she and a 40,000-year-old individual from Tianyuan outside Beijing carried genomic segments of Denisovan ancestry. These segments derive from the same Denisovan admixture event(s) that contributed to present-day mainland Asians but are distinct from the Denisovan DNA segments in present-day Papuans and Aboriginal Australians.

46 citations

Journal ArticleDOI
TL;DR: The Salkhit skull from Mongolia is date to approximately 34–35 thousand years ago and its mitochondrial genome is reconstructed, finding that it falls within modern human haplogroup N found across Eurasia.
Abstract: A skullcap found in the Salkhit Valley in northeast Mongolia is, to our knowledge, the only Pleistocene hominin fossil found in the country. It was initially described as an individual with possible archaic affinities, but its ancestry has been debated since the discovery. Here, we determine the age of the Salkhit skull by compound-specific radiocarbon dating of hydroxyproline to 34,950–33,900 Cal. BP (at 95% probability), placing the Salkhit individual in the Early Upper Paleolithic period. We reconstruct the complete mitochondrial genome (mtDNA) of the specimen. It falls within a group of modern human mtDNAs (haplogroup N) that is widespread in Eurasia today. The results now place the specimen into its proper chronometric and biological context and allow us to begin integrating it with other evidence for the human occupation of this region during the Paleolithic, as well as wider Pleistocene sequences across Eurasia. The Salkhit skull from Mongolia was initially suggested to have archaic hominin characters. Here, Deviese and colleagues date the skull to approximately 34–35 thousand years ago and reconstruct its mitochondrial genome, finding that it falls within modern human haplogroup N found across Eurasia.

44 citations

Journal ArticleDOI
TL;DR: In this paper, a database containing sighting information of humpback whales intercepted by boat in the West African Breeding Stock B (WSA) region from 1983 to 2008 was compiled, which included a total of 1 820 identification images of ventral tail flukes and lateral views of dorsal fins.
Abstract: Humpback whales Megaptera novaeangliae found off west South Africa (WSA) are known to display an atypical migration that may include temporary residency and feeding during spring and summer. At a regional scale there is uncertainty about how these whales relate to the greater West African Breeding Stock B as a whole, with evidence both for and against its division into two substocks. A database containing sighting information of humpback whales intercepted by boat in the WSA region from 1983 to 2008 was compiled. It included a total of 1 820 identification images of ventral tail flukes and lateral views of dorsal fins. After systematic within- and between-year matching of images of usable quality, it yielded 154 different individuals identified by tail flukes (TF), 230 by left dorsal fins (LDF), and 237 by right dorsal fins (RDF). Microsatellite (MS) matching of 216 skin biopsies yielded 156 individuals. By linking all possible sightings of the same individuals using all available identification features, the periodicity and seasonality of 281 individual whales were examined. In all, 60 whales were resighted on different days of which 44 were between different calendar years. The most resightings for one individual was 11 times, seen in six different years, and the longest interval between first and last sightings was about 18 years. A resighting rate of 15.6% of whales at intervals of a year or more indicates long-term fidelity to the region. Shorter intervals of 1–6 months between sequential sightings in the same year may suggest temporary residency. The TF image collection from WSA was compared to TF collections from four other regions, namely Gabon, Cabinda (Angola), Namibia and the Antarctic Humpback Whale Catalogue (AHWC). Three matches were detected between WSA (in late spring or summer) and Gabon (in winter), confirming direct movement between these regions. The capture–recapture data of four different identification features (TF, RDF, LDF and MS) from six successive subsets of data from periods with the highest collection effort (2001–2007) were used to calculate the number of whales that utilise the region, using both closed- and open-population models. Dorsal fins have never been used to estimate abundance for humpback whales, so the different identification features were evaluated for potential biases. This revealed 9–14% incidence of missed matches (false negatives) when using dorsal fins that would result in an overestimate, whereas variation in individual fluke-up behaviour may lower estimates by as much as 57–66% due to heterogeneity of individual capture probability. Taking into consideration the small dataset and low number of recaptures, the most consistent and precise results were obtained from a fully time-dependent version of the Jolly-Seber open-population model, with annual survival fixed at 0.96, using the MS dataset. This suggests that the WSA feeding assemblage during the months of spring and summer (September– March) of the study period numbered about 500 animals. The relationship of these whales to those (perhaps strictly migratory) that may occur in other seasons of the year, and their links to possible migratory routes and other feeding or breeding areas, remain uncertain.

44 citations

Journal ArticleDOI
06 Jun 2017-eLife
TL;DR: Recovery of full mitochondrial genomes from four and partial nuclear genomes from two P. antiquus fossils demonstrate that the current picture of elephant evolution is in need of substantial revision and suggests that Loxodonta has not been constrained to Africa.
Abstract: The straight-tusked elephants Palaeoloxodon spp. were widespread across Eurasia during the Pleistocene. Phylogenetic reconstructions using morphological traits have grouped them with Asian elephants (Elephas maximus), and many paleontologists place Palaeoloxodon within Elephas. Here, we report the recovery of full mitochondrial genomes from four and partial nuclear genomes from two P. antiquus fossils. These fossils were collected at two sites in Germany, Neumark-Nord and Weimar-Ehringsdorf, and likely date to interglacial periods ~120 and ~244 thousand years ago, respectively. Unexpectedly, nuclear and mitochondrial DNA analyses suggest that P. antiquus was a close relative of extant African forest elephants (Loxodonta cyclotis). Species previously referred to Palaeoloxodon are thus most parsimoniously explained as having diverged from the lineage of Loxodonta, indicating that Loxodonta has not been constrained to Africa. Our results demonstrate that the current picture of elephant evolution is in need of substantial revision.

43 citations

Journal ArticleDOI
TL;DR: It is proposed that the trap is a Frenkel exciton state formed much below the main exciton band edge due to an environmentally induced heavy-tailed Lévy disorder, which points to disorder engineering as a new avenue in controlling light-harvesting in molecular ensembles.
Abstract: Using fluorescence super-resolution microscopy we studied simultaneous spectral, spatial localization, and blinking behavior of individual 1D J-aggregates. Excitons migrating 100 nm are funneled to a trap appearing as an additional red-shifted blinking fluorescence band. We propose that the trap is a Frenkel exciton state formed much below the main exciton band edge due to an environmentally induced heavy-tailed Levy disorder. This points to disorder engineering as a new avenue in controlling light-harvesting in molecular ensembles.

41 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal Article
Fumio Tajima1
30 Oct 1989-Genomics
TL;DR: It is suggested that the natural selection against large insertion/deletion is so weak that a large amount of variation is maintained in a population.

11,521 citations

01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

Journal ArticleDOI
TL;DR: A unified analytic framework to discover and genotype variation among multiple samples simultaneously that achieves sensitive and specific results across five sequencing technologies and three distinct, canonical experimental designs is presented.
Abstract: Recent advances in sequencing technology make it possible to comprehensively catalogue genetic variation in population samples, creating a foundation for understanding human disease, ancestry and evolution. The amounts of raw data produced are prodigious and many computational steps are required to translate this output into high-quality variant calls. We present a unified analytic framework to discover and genotype variation among multiple samples simultaneously that achieves sensitive and specific results across five sequencing technologies and three distinct, canonical experimental designs. Our process includes (1) initial read mapping; (2) local realignment around indels; (3) base quality score recalibration; (4) SNP discovery and genotyping to find all potential variants; and (5) machine learning to separate true segregating variation from machine artifacts common to next-generation sequencing technologies. We discuss the application of these tools, instantiated in the Genome Analysis Toolkit (GATK), to deep whole-genome, whole-exome capture, and multi-sample low-pass (~4×) 1000 Genomes Project datasets.

10,056 citations

Journal ArticleDOI
TL;DR: The ability of CADD to prioritize functional, deleterious and pathogenic variants across many functional categories, effect sizes and genetic architectures is unmatched by any current single-annotation method.
Abstract: Our capacity to sequence human genomes has exceeded our ability to interpret genetic variation. Current genomic annotations tend to exploit a single information type (e.g. conservation) and/or are restricted in scope (e.g. to missense changes). Here, we describe Combined Annotation Dependent Depletion (CADD), a framework that objectively integrates many diverse annotations into a single, quantitative score. We implement CADD as a support vector machine trained to differentiate 14.7 million high-frequency human derived alleles from 14.7 million simulated variants. We pre-compute “C-scores” for all 8.6 billion possible human single nucleotide variants and enable scoring of short insertions/deletions. C-scores correlate with allelic diversity, annotations of functionality, pathogenicity, disease severity, experimentally measured regulatory effects, and complex trait associations, and highly rank known pathogenic variants within individual genomes. The ability of CADD to prioritize functional, deleterious, and pathogenic variants across many functional categories, effect sizes and genetic architectures is unmatched by any current annotation.

4,956 citations