scispace - formally typeset
Search or ask a question
Author

Matthias P. Mayer

Bio: Matthias P. Mayer is an academic researcher from Heidelberg University. The author has contributed to research in topics: Chaperone (protein) & Protein folding. The author has an hindex of 62, co-authored 166 publications receiving 13680 citations. Previous affiliations of Matthias P. Mayer include University of Freiburg & German Cancer Research Center.


Papers
More filters
Journal ArticleDOI
TL;DR: This work has shown that for specific tasks the Hsp70 cycle is coupled to the action of other chaperones, such as Hsp90 and Hsp100, and this ATPase cycle is controlled by co-chaperones of the family of J-domain proteins, which target H Sp70s to their substrates, and by nucleotide exchange factors, which determine the lifetime of the HSp70-substrate complex.
Abstract: Hsp70 proteins are central components of the cellular network of molecular chaperones and folding catalysts. They assist a large variety of protein folding processes in the cell by transient association of their substrate binding domain with short hydrophobic peptide segments within their substrate proteins. The substrate binding and release cycle is driven by the switching of Hsp70 between the low-affinity ATP bound state and the high-affinity ADP bound state. Thus, ATP binding and hydrolysis are essential in vitro and in vivo for the chaperone activity of Hsp70 proteins. This ATPase cycle is controlled by co-chaperones of the family of J-domain proteins, which target Hsp70s to their substrates, and by nucleotide exchange factors, which determine the lifetime of the Hsp70-substrate complex. Additional co-chaperones fine-tune this chaperone cycle. For specific tasks the Hsp70 cycle is coupled to the action of other chaperones, such as Hsp90 and Hsp100.

2,564 citations

Journal ArticleDOI
TL;DR: Recent advances that have increased the understanding of the molecular mechanisms and working principles of the Hsp70 network are described, and new opportunities for the development of chemical compounds that modulate disease-related HSp70 activities are offered.
Abstract: The 70-kDa heat shock proteins (Hsp70s) are ubiquitous molecular chaperones that act in a large variety of cellular protein folding and remodelling processes. They function virtually at all stages of the life of proteins from synthesis to degradation and are thus crucial for maintaining protein homeostasis, with direct implications for human health. A large set of co-chaperones comprising J-domain proteins and nucleotide exchange factors regulate the ATPase cycle of Hsp70s, which is allosterically coupled to substrate binding and release. Moreover, Hsp70s cooperate with other cellular chaperone systems including Hsp90, Hsp60 chaperonins, small heat shock proteins and Hsp100 AAA+ disaggregases, together constituting a dynamic and functionally versatile network for protein folding, unfolding, regulation, targeting, aggregation and disaggregation, as well as degradation. In this Review we describe recent advances that have increased our understanding of the molecular mechanisms and working principles of the Hsp70 network. This knowledge showcases how the Hsp70 chaperone system controls diverse cellular functions, and offers new opportunities for the development of chemical compounds that modulate disease-related Hsp70 activities. The Hsp70 chaperones regulate protein metabolism, including folding, unfolding, subcellular localization, aggregation/disaggregation and incorporation into protein complexes. Recent studies have revealed the mechanisms of functions of Hsp70s and their co-chaperones, highlighting new opportunities for modulating disease-related Hsp70 roles.

572 citations

Journal ArticleDOI
TL;DR: This paper showed that DnaJ stimulates ATP hydrolysis by Escherichia coli Hsp70, DnaK, very efficiently to > 1000-fold, but only if present at high (micromolar) concentration.
Abstract: Hsp70 chaperones assist a large variety of protein folding processes within the entire lifespan of proteins. Central to these activities is the regulation of Hsp70 by DnaJ cochaperones. DnaJ stimulates Hsp70 to hydrolyze ATP, a key step that closes its substrate-binding cavity and thus allows stable binding of substrate. We show that DnaJ stimulates ATP hydrolysis by Escherichia coli Hsp70, DnaK, very efficiently to >1000-fold, but only if present at high (micromolar) concentration. In contrast, the chaperone activity of DnaK in luciferase refolding was maximal at several hundredfold lower concentration of DnaJ. However, DnaJ was capable of maximally stimulating the DnaK ATPase even at this low concentration, provided that protein substrate was present, indicating synergistic action of DnaJ and substrate. Peptide substrates were poorly effective in this synergistic action. DnaJ action required binding of protein substrates to the central hydrophobic pocket of the substrate-binding cavity of DnaK, as evidenced by the reduced ability of DnaJ to stimulate ATP hydrolysis by a DnaK mutant with defects in substrate binding. At high concentrations, DnaJ itself served as substrate for DnaK in a process considered to be unphysiological. Mutant analysis furthermore revealed that DnaJ-mediated stimulation of ATP hydrolysis requires communication between the ATPase and substrate-binding domains of DnaK. This mechanism thus allows DnaJ to tightly couple ATP hydrolysis by DnaK with substrate binding and to avoid jamming of the DnaK chaperone with peptides. It probably is conserved among Hsp70 family members and is proposed to account for their functional diversity.

542 citations

Journal ArticleDOI
TL;DR: Recent insights into the structure and mechanism of Hsp70s are discussed, shedding light on the molecular mechanism by which Hsp80s assist protein folding and suggesting that Hsp 70s exist in at least two conformational states.

380 citations

Journal ArticleDOI
TL;DR: In this article, the authors analyzed mutants of DnaK, an Hsp70 homolog, altered in key residues of its substrate binding domain and found that the conformational changes in the alpha-helical lid and the beta-domain caused the opening of the substrate binding cavity.
Abstract: The 70 kDa heat shock proteins (the Hsp70 family) assist refolding of their substrates through ATP-controlled binding. We have analyzed mutants of DnaK, an Hsp70 homolog, altered in key residues of its substrate binding domain. Substrate binding occurs by a dynamic mechanism involving: a hydrophobic pocket for a single residue that is crucial for affinity, a two-layered closing device involving independent action of an alpha-helical lid and an arch, and a superimposed allosteric mechanism of ATP-controlled opening of the substrate binding cavity that operates largely through a beta-structured subdomain. Correlative evidence from mutational analysis suggests that the ADP and ATP states of DnaK differ in the frequency of the conformational changes in the alpha-helical lid and beta-domain that cause opening of the substrate binding cavity. The affinity for substrates, as defined by this mechanism, determines the efficiency of DnaJ-mediated and ATP hydrolysis mediated locking-in of substrates and chaperone activity of DnaK.

379 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
08 Mar 2002-Science
TL;DR: Understanding how the thousands of different proteins synthesized in a cell use this chaperone machinery has profound implications for biotechnology and medicine.
Abstract: Efficient folding of many newly synthesized proteins depends on assistance from molecular chaperones, which serve to prevent protein misfolding and aggregation in the crowded environment of the cell. Nascent chain–binding chaperones, including trigger factor, Hsp70, and prefoldin, stabilize elongating chains on ribosomes in a nonaggregated state. Folding in the cytosol is achieved either on controlled chain release from these factors or after transfer of newly synthesized proteins to downstream chaperones, such as the chaperonins. These are large, cylindrical complexes that provide a central compartment for a single protein chain to fold unimpaired by aggregation. Understanding how the thousands of different proteins synthesized in a cell use this chaperone machinery has profound implications for biotechnology and medicine.

3,288 citations

Journal ArticleDOI
21 Jul 2011-Nature
TL;DR: It is suggested that an age-related decline in proteostasis capacity allows the manifestation of various protein-aggregation diseases, including Alzheimer's disease and Parkinson's disease, which may spring from a detailed understanding of the pathways underlying proteome maintenance.
Abstract: Most proteins must fold into defined three-dimensional structures to gain functional activity. But in the cellular environment, newly synthesized proteins are at great risk of aberrant folding and aggregation, potentially forming toxic species. To avoid these dangers, cells invest in a complex network of molecular chaperones, which use ingenious mechanisms to prevent aggregation and promote efficient folding. Because protein molecules are highly dynamic, constant chaperone surveillance is required to ensure protein homeostasis (proteostasis). Recent advances suggest that an age-related decline in proteostasis capacity allows the manifestation of various protein-aggregation diseases, including Alzheimer's disease and Parkinson's disease. Interventions in these and numerous other pathological states may spring from a detailed understanding of the pathways underlying proteome maintenance.

2,803 citations

Journal ArticleDOI
TL;DR: This work has shown that for specific tasks the Hsp70 cycle is coupled to the action of other chaperones, such as Hsp90 and Hsp100, and this ATPase cycle is controlled by co-chaperones of the family of J-domain proteins, which target H Sp70s to their substrates, and by nucleotide exchange factors, which determine the lifetime of the HSp70-substrate complex.
Abstract: Hsp70 proteins are central components of the cellular network of molecular chaperones and folding catalysts. They assist a large variety of protein folding processes in the cell by transient association of their substrate binding domain with short hydrophobic peptide segments within their substrate proteins. The substrate binding and release cycle is driven by the switching of Hsp70 between the low-affinity ATP bound state and the high-affinity ADP bound state. Thus, ATP binding and hydrolysis are essential in vitro and in vivo for the chaperone activity of Hsp70 proteins. This ATPase cycle is controlled by co-chaperones of the family of J-domain proteins, which target Hsp70s to their substrates, and by nucleotide exchange factors, which determine the lifetime of the Hsp70-substrate complex. Additional co-chaperones fine-tune this chaperone cycle. For specific tasks the Hsp70 cycle is coupled to the action of other chaperones, such as Hsp90 and Hsp100.

2,564 citations