scispace - formally typeset
Search or ask a question
Author

Matthias Saurer

Bio: Matthias Saurer is an academic researcher from Swiss Federal Institute for Forest, Snow and Landscape Research. The author has contributed to research in topics: Dendrochronology & Stomatal conductance. The author has an hindex of 57, co-authored 175 publications receiving 9507 citations. Previous affiliations of Matthias Saurer include French Alternative Energies and Atomic Energy Commission & University of Bern.


Papers
More filters
Journal ArticleDOI
TL;DR: A conceptual model that gives insight into the relationship between stomatal conductance and photosynthetic capacity resulting from differing environmental constraints and plant-internal factors is developed, and it is concluded that the proposed model is a promising tool for deriving carbon water relations in different functional groups from δ18O and δ13C isotope data.
Abstract: Based on measurements of δ18O and δ13C in organic matter of C3-plants, we have developed a conceptual model that gives insight into the relationship between stomatal conductance (g l) and photosynthetic capacity (A max) resulting from differing environmental constraints and plant-internal factors. This is a semi-quantitative approach to describing the long-term effects of environmental factors on CO2 and H2O gas exchange, whereby we estimate the intercellular CO2 concentration (c i) from δ13C and the air humidity from δ18O. Assuming that air humidity is an important factor influencing g l, the model allows us to distinguish whether differences in c i are caused by a response of g l or of A max. As an application of the model we evaluated the isotope data from three species in plots differing in intensity of land use (hay meadows and abandoned areas) at three sites along a south north transect in the Eastern Alps. We found three different δ18O-δ13C response patterns in native and planted grassland species (cultivated in the greenhouse). After preliminary confirmation by gas-exchange measurements we conclude that the proposed model is a promising tool for deriving carbon water relations in different functional groups from δ18O and δ13C isotope data.

530 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the response of conifer trees in northern Eurasia to climate change and increasing CO2 over the last century by measuring the carbon isotope ratio in tree rings.
Abstract: We investigated the response of conifer trees in northern Eurasia to climate change and increasing CO2 over the last century by measuring the carbon isotope ratio in tree rings. Samples from Larix, Pinus and Picea trees growing at 26 high-latitude sites (59‐711N) from Norway to Eastern Siberia were analysed. When comparing the periods 1861‐1890 and 1961‐1990, the isotope discrimination and the ratio of the intercellular to ambient CO2 concentration (ci/ca) remained constant for trees growing in mild oceanic climate and under extremely cold and dry continental conditions. This shows a strong coordination of gas-exchange processes, consisting in a biochemical acclimation and a reduction of the stomatal conductance. The correlation for ci/ca between the two investigated periods was particularly strong for Larix (r 2 50.90) and Pinus (r 2 50.94), but less pronounced for Picea (r 2 50.47). Constant ci/ca under increasing CO2 in the atmosphere resulted in improved intrinsic water-use efficiency (Wi), the amount of water loss at the leaf level per unit carbon gain. We found that 125 out of 126 trees showed increasing Wi from 1861 to 1890 to 1961 to 1990, with an average improvement of

387 citations

Journal ArticleDOI
TL;DR: In this article, the authors used long-term δ13C tree-ring measurements across a European forest network to reconstruct the physiologically driven response of intercellular CO2 caused by atmospheric CO2 (Ca) trends.
Abstract: Considering the combined effects of CO2 fertilization and climate change drivers on plant physiology leads to a modest increase in simulated European forest transpiration in spite of the effects of CO2-induced stomatal closure. The Earth’s carbon and hydrologic cycles are intimately coupled by gas exchange through plant stomata1,2,3. However, uncertainties in the magnitude4,5,6 and consequences7,8 of the physiological responses9,10 of plants to elevated CO2 in natural environments hinders modelling of terrestrial water cycling and carbon storage11. Here we use annually resolved long-term δ13C tree-ring measurements across a European forest network to reconstruct the physiologically driven response of intercellular CO2 (Ci) caused by atmospheric CO2 (Ca) trends. When removing meteorological signals from the δ13C measurements, we find that trees across Europe regulated gas exchange so that for one ppmv atmospheric CO2 increase, Ci increased by ∼0.76 ppmv, most consistent with moderate control towards a constant Ci/Ca ratio. This response corresponds to twentieth-century intrinsic water-use efficiency (iWUE) increases of 14 ± 10 and 22 ± 6% at broadleaf and coniferous sites, respectively. An ensemble of process-based global vegetation models shows similar CO2 effects on iWUE trends. Yet, when operating these models with climate drivers reintroduced, despite decreased stomatal opening, 5% increases in European forest transpiration are calculated over the twentieth century. This counterintuitive result arises from lengthened growing seasons, enhanced evaporative demand in a warming climate, and increased leaf area, which together oppose effects of CO2-induced stomatal closure. Our study questions changes to the hydrological cycle, such as reductions in transpiration and air humidity, hypothesized to result from plant responses to anthropogenic emissions.

349 citations

Journal ArticleDOI
TL;DR: If summers become drier, trees growing on mesic sites will undergo significant growth reductions, whereas at their dry distribution limit in the Alps, tree growth of the highly sensitive spruce and larch may collapse, likely inducing dieback and compromising the provision of ecosystem services.
Abstract: The ability of tree species to cope with anticipated decrease in water availability is still poorly understood. We evaluated the potential of Norway spruce, Scots pine, European larch, black pine, and Douglas-fir to withstand drought in a drier future climate by analyzing their past growth and physiological responses at a xeric and a mesic site in Central Europe using dendroecological methods. Earlywood, latewood, and total ring width, as well as the d13C and d18O in early- and latewood were measured and statistically related to a multiscalar soil water deficit index from 1961 to 2009. At the xeric site, d13C values of all species were strongly linked to water deficits that lasted longer than 11 months, indicating a long-term cumulative effect on the carbon pool. Trees at the xeric site were particularly sensitive to soil water recharge in the preceding autumn and early spring. The native species European larch and Norway spruce, growing close to their dry distribution limit at the xeric site, were found to be the most vulnerable species to soil water deficits. At the mesic site, summer water availability was critical for all species, whereas water availability prior to the growing season was less important. Trees at the mesic were more vulnerable to water deficits of shorter duration than the xeric site. We conclude that if summers become drier, trees growing on mesic sites will undergo significant growth reductions, whereas at their dry distribution limit in the Alps, tree growth of the highly sensitive spruce and larch may collapse, likely inducing dieback and compromising the provision of ecosystem services. However, the magnitude of these changes will be mediated strongly by soil water recharge in winter and thus water availability at the beginning of the growing season.

258 citations

Journal ArticleDOI
TL;DR: In this paper, the carbon and oxygen isotopic composition of stem cellulose of Pinus sylvestris, Picea abies, Fagus sylvatica and Fraxinus excelsior was measured along a transect of a small valley in Switzerland.
Abstract: We measured the carbon and oxygen isotopic composition of stem cellulose of Pinus sylvestris, Picea abies, Fagus sylvatica and Fraxinus excelsior. Several sites along a transect of a small valley in Switzerland were selected which differ in soil moisture conditions. At every site, six trees per species were sampled, and a sample representing a mean value for the period from 1940 to 1990 was analysed. For all species, the mean site δ13C and δ18O of stem cellulose are related to the soil moisture availability, whereby higher isotope ratios are found at drier sites. This result is consistent with isotope fractionation models when assuming enhanced stomatal resistance (thus higher δ13C of incorporated carbon) and increased oxygen isotope enrichment in the leaf water (thus higher δ18O) at the dry sites. δ18 O-δ13C plots reveal a linear relationship between the carbon and oxygen isotopes in cellulose. To interpret this relationship we developed an equation which combines the above-mentioned fractionation models. An important new parameter is the degree to which the leaf water enrichment is reflected in the stem cellulose. In the combined model the slope of the δ18O-δ13C plot is related to the sensitivity of the pi/pa of a plant to changing relative humidity.

226 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors provided an assessment of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice.
Abstract: Black carbon aerosol plays a unique and important role in Earth's climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. This assessment provides an evaluation of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice. These effects are calculated with climate models, but when possible, they are evaluated with both microphysical measurements and field observations. Predominant sources are combustion related, namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom-up inventory methods are 7500 Gg yr−1 in the year 2000 with an uncertainty range of 2000 to 29000. However, global atmospheric absorption attributable to black carbon is too low in many models and should be increased by a factor of almost 3. After this scaling, the best estimate for the industrial-era (1750 to 2005) direct radiative forcing of atmospheric black carbon is +0.71 W m−2 with 90% uncertainty bounds of (+0.08, +1.27) W m−2. Total direct forcing by all black carbon sources, without subtracting the preindustrial background, is estimated as +0.88 (+0.17, +1.48) W m−2. Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings, including rapid adjustments. The best estimate of industrial-era climate forcing of black carbon through all forcing mechanisms, including clouds and cryosphere forcing, is +1.1 W m−2 with 90% uncertainty bounds of +0.17 to +2.1 W m−2. Thus, there is a very high probability that black carbon emissions, independent of co-emitted species, have a positive forcing and warm the climate. We estimate that black carbon, with a total climate forcing of +1.1 W m−2, is the second most important human emission in terms of its climate forcing in the present-day atmosphere; only carbon dioxide is estimated to have a greater forcing. Sources that emit black carbon also emit other short-lived species that may either cool or warm climate. Climate forcings from co-emitted species are estimated and used in the framework described herein. When the principal effects of short-lived co-emissions, including cooling agents such as sulfur dioxide, are included in net forcing, energy-related sources (fossil fuel and biofuel) have an industrial-era climate forcing of +0.22 (−0.50 to +1.08) W m−2 during the first year after emission. For a few of these sources, such as diesel engines and possibly residential biofuels, warming is strong enough that eliminating all short-lived emissions from these sources would reduce net climate forcing (i.e., produce cooling). When open burning emissions, which emit high levels of organic matter, are included in the total, the best estimate of net industrial-era climate forcing by all short-lived species from black-carbon-rich sources becomes slightly negative (−0.06 W m−2 with 90% uncertainty bounds of −1.45 to +1.29 W m−2). The uncertainties in net climate forcing from black-carbon-rich sources are substantial, largely due to lack of knowledge about cloud interactions with both black carbon and co-emitted organic carbon. In prioritizing potential black-carbon mitigation actions, non-science factors, such as technical feasibility, costs, policy design, and implementation feasibility play important roles. The major sources of black carbon are presently in different stages with regard to the feasibility for near-term mitigation. This assessment, by evaluating the large number and complexity of the associated physical and radiative processes in black-carbon climate forcing, sets a baseline from which to improve future climate forcing estimates.

4,591 citations

Journal ArticleDOI
TL;DR: The results from this review may provide the most plausible estimates of how plants in their native environments and field-grown crops will respond to rising atmospheric [CO(2)]; but even with FACE there are limitations, which are discussed.
Abstract: Contents Summary 1 I. What is FACE? 2 II. Materials and methods 2 III. Photosynthetic carbon uptake 3 IV. Acclimation of photosynthesis 6 V. Growth, above-ground production and yield 8 VI. So, what have we learned? 10 Acknowledgements 11 References 11 Appendix 1. References included in the database for meta-analyses 14 Appendix 2. Results of the meta-analysis of FACE effects 18 Summary Free-air CO2 enrichment (FACE) experiments allow study of the effects of elevated [CO2] on plants and ecosystems grown under natural conditions without enclosure. Data from 120 primary, peer-reviewed articles describing physiology and production in the 12 large-scale FACE experiments (475–600 ppm) were collected and summarized using meta-analytic techniques. The results confirm some results from previous chamber experiments: light-saturated carbon uptake, diurnal C assimilation, growth and above-ground production increased, while specific leaf area and stomatal conductance decreased in elevated [CO2]. There were differences in FACE. Trees were more responsive than herbaceous species to elevated [CO2]. Grain crop yields increased far less than anticipated from prior enclosure studies. The broad direction of change in photosynthesis and production in elevated [CO2] may be similar in FACE and enclosure studies, but there are major quantitative differences: trees were more responsive than other functional types; C4 species showed little response; and the reduction in plant nitrogen was small and largely accounted for by decreased Rubisco. The results from this review may provide the most plausible estimates of how plants in their native environments and field-grown crops will respond to rising atmospheric [CO2]; but even with FACE there are limitations, which are also discussed.

3,140 citations

Journal ArticleDOI
TL;DR: The current state of knowledge, major open questions, and research perspectives on the properties and interactions of atmospheric aerosols and their effects on climate and human health are outlined.
Abstract: Aerosols are of central importance for atmospheric chemistry and physics, the biosphere, climate, and public health. The airborne solid and liquid particles in the nanometer to micrometer size range influence the energy balance of the Earth, the hydrological cycle, atmospheric circulation, and the abundance of greenhouse and reactive trace gases. Moreover, they play important roles in the reproduction of biological organisms and can cause or enhance diseases. The primary parameters that determine the environmental and health effects of aerosol particles are their concentration, size, structure, and chemical composition. These parameters, however, are spatially and temporally highly variable. The quantification and identification of biological particles and carbonaceous components of fine particulate matter in the air (organic compounds and black or elemental carbon, respectively) represent demanding analytical challenges. This Review outlines the current state of knowledge, major open questions, and research perspectives on the properties and interactions of atmospheric aerosols and their effects on climate and human health.

1,868 citations

Journal ArticleDOI
TL;DR: In this article, the authors identify ten contrasting perspectives that shape the vulnerability debate but have not been discussed collectively and present a set of global vulnerability drivers that are known with high confidence: (1) droughts eventually occur everywhere; (2) warming produces hotter Droughts; (3) atmospheric moisture demand increases nonlinearly with temperature during drought; (4) mortality can occur faster in hotter Drought, consistent with fundamental physiology; (5) shorter Drought can become lethal under warming, increasing the frequency of lethal Drought; and (6) mortality happens rapidly
Abstract: Patterns, mechanisms, projections, and consequences of tree mortality and associated broad-scale forest die-off due to drought accompanied by warmer temperatures—“hotter drought”, an emerging characteristic of the Anthropocene—are the focus of rapidly expanding literature. Despite recent observational, experimental, and modeling studies suggesting increased vulnerability of trees to hotter drought and associated pests and pathogens, substantial debate remains among research, management and policy-making communities regarding future tree mortality risks. We summarize key mortality-relevant findings, differentiating between those implying lesser versus greater levels of vulnerability. Evidence suggesting lesser vulnerability includes forest benefits of elevated [CO2] and increased water-use efficiency; observed and modeled increases in forest growth and canopy greening; widespread increases in woody-plant biomass, density, and extent; compensatory physiological, morphological, and genetic mechanisms; dampening ecological feedbacks; and potential mitigation by forest management. In contrast, recent studies document more rapid mortality under hotter drought due to negative tree physiological responses and accelerated biotic attacks. Additional evidence suggesting greater vulnerability includes rising background mortality rates; projected increases in drought frequency, intensity, and duration; limitations of vegetation models such as inadequately represented mortality processes; warming feedbacks from die-off; and wildfire synergies. Grouping these findings we identify ten contrasting perspectives that shape the vulnerability debate but have not been discussed collectively. We also present a set of global vulnerability drivers that are known with high confidence: (1) droughts eventually occur everywhere; (2) warming produces hotter droughts; (3) atmospheric moisture demand increases nonlinearly with temperature during drought; (4) mortality can occur faster in hotter drought, consistent with fundamental physiology; (5) shorter droughts occur more frequently than longer droughts and can become lethal under warming, increasing the frequency of lethal drought nonlinearly; and (6) mortality happens rapidly relative to growth intervals needed for forest recovery. These high-confidence drivers, in concert with research supporting greater vulnerability perspectives, support an overall viewpoint of greater forest vulnerability globally. We surmise that mortality vulnerability is being discounted in part due to difficulties in predicting threshold responses to extreme climate events. Given the profound ecological and societal implications of underestimating global vulnerability to hotter drought, we highlight urgent challenges for research, management, and policy-making communities.

1,786 citations

01 Dec 2010
TL;DR: In this article, the authors suggest a reduction in the global NPP of 0.55 petagrams of carbon, which would not only weaken the terrestrial carbon sink, but would also intensify future competition between food demand and biofuel production.
Abstract: Terrestrial net primary production (NPP) quantifies the amount of atmospheric carbon fixed by plants and accumulated as biomass. Previous studies have shown that climate constraints were relaxing with increasing temperature and solar radiation, allowing an upward trend in NPP from 1982 through 1999. The past decade (2000 to 2009) has been the warmest since instrumental measurements began, which could imply continued increases in NPP; however, our estimates suggest a reduction in the global NPP of 0.55 petagrams of carbon. Large-scale droughts have reduced regional NPP, and a drying trend in the Southern Hemisphere has decreased NPP in that area, counteracting the increased NPP over the Northern Hemisphere. A continued decline in NPP would not only weaken the terrestrial carbon sink, but it would also intensify future competition between food demand and proposed biofuel production.

1,780 citations