scispace - formally typeset
Search or ask a question
Author

Matthias Scholl

Bio: Matthias Scholl is an academic researcher from California Institute of Technology. The author has contributed to research in topics: Ruthenium & Metathesis. The author has an hindex of 12, co-authored 22 publications receiving 5265 citations. Previous affiliations of Matthias Scholl include Massachusetts Institute of Technology.

Papers
More filters
Journal ArticleDOI
TL;DR: These air- and water-tolerant complexes were shown to exhibit an increased ring-closing metathesis activity at elevated temperature when compared to that of the parent complex 2 and the previously developed complex 3.

3,127 citations

Journal ArticleDOI
TL;DR: In this article, an air and water tolerant, imidazolinylidene-substituted ruthenium-based complex has been prepared starting from RuCl2(CHPh)(PCy3)2 and shown to exhibit increased ring-closing metathesis activity at elevated temperature compared to that of the parent complex.

793 citations

Journal ArticleDOI
TL;DR: In this paper, a single-step synthesis of α-functionalized olefins by intermolecular cross-metathesis and intramolecular ring-closing metathesis using ruthenium alkylidene 3 was reported.
Abstract: The generation of olefins with electron-withdrawing functionality, such as α,β-unsaturated aldehydes, ketones, and esters, remains a difficult task in organic chemistry. A practical method to approach this problem would involve olefin metathesis, utilizing well-defined alkylidenes such as ((CF_3)_2MeCO)_2(ArN)Mo CH(t-Bu) (1) and (Pcy_3)_2Cl_2Ru CHPh (2). However, the generation of olefins with vinylic functionality through the use of cross-metathesis (CM) has met with limited success. In one of the few reports of this reaction, Crowe and Goldberg demonstrated that acrylonitrile participated in cross-metathesis reactions with a variety of terminal olefins. Other π-conjugated olefins, such as enones and enoic esters, were not functional group compatible with alkylidene 1 and failed to react with 2 in cross-metathesis. Recently, the highly active ruthenium-based olefin metathesis catalyst 3, which contains a 1,3-dimesityl-4,5-dihydro-imidazol-2-ylidene ligand, was found to efficiently catalyze the cross-metathesis of 1,1-geminally disubstituted olefins.7 Because ruthenium alkylidene 3 displayed unique activity toward previously metathesis-inactive substrates, we decided to investigate the metathesis of α-functionalized olefins. In this communication, we report the single-step synthesis of α-functionalized olefins by intermolecular cross-metathesis and intramolecular ring-closing metathesis using ruthenium alkylidene 3.

546 citations

Journal ArticleDOI
TL;DR: This paper reports the synthesis and characterization of a variety of ruthenium complexes coordinated with phosphine and N-heterocyclic carbene (NHC) ligands, and evaluates the olefin metathesis activity of NHC-coordinated complexes in representative RCM and ROMP reactions.
Abstract: This paper reports the synthesis and characterization of a variety of ruthenium complexes coordinated with phosphine and N-heterocyclic carbene (NHC) ligands. These complexes include several alkylidene derivatives of the general formula (NHC)(PR3)(Cl)2RuCHR‘, which are highly active olefin metathesis catalysts. Although these catalysts can be prepared adequately by the reaction of bis(phosphine) ruthenium alkylidene precursors with free NHCs, we have developed an alternative route that employs NHC-alcohol or -chloroform adducts as “protected” forms of the NHC ligands. This route is advantageous because NHC adducts are easier to handle than their free carbene counterparts. We also demonstrate that sterically bulky bis(NHC) complexes can be made by reaction of the pyridine-coordinated precursor (NHC)(py)2(Cl)2RuCHPh with free NHCs or NHC adducts. Two crystal structures are presented, one of the mixed bis(NHC) derivative (H2IMes)(IMes)(Cl)2RuCHPh, and the other of (PCy3)(Cl)(CO)Ru[η2-(CH2-C6H2Me2)(N2C3H4)(C6...

498 citations

Patent
22 May 2000
TL;DR: In this article, a novel metathesis catalysts with an imidazolidine-based ligand and methods for making and using the same are described. But the present method is limited to the use of a single atom.
Abstract: The present invention relates to novel metathesis catalysts with an imidazolidine-based ligand and to methods for making and using the same. The inventive catalysts are of formula (I) wherein : M is ruthemium or osmium; X and X1 are each independently an anionic ligand; L is a neutral electron donor ligand; and, R, R?1, R6, R7, R8 and R9? are each independently hydrogen or a substituent selected from the group consisting of C?1?-C20 alkyl, C2-C20 alkenyl, C2-C20 alkynyl, aryl, C1-C20 carboxylate, C1-C20 alkoxy, C2-C20 alkenyloxy, C2-C20 alkynyloxy, aryloxy, C2-C20 alkoxycarbonyl, C1-C20 alkylthiol, aryl thiol, C1-C20 alkylsulfonyl and C1-C20 alkylsulfinyl, the substituent optionally substituted with one or more moieties selected from the group consisting of C1-C10 alkyl, C1-C10 alkoxy, aryl, and a functional group selected from the group consisting of hydroxyl, thiol thioether, ketone, aldehyde, ester, ether, amine, imine, amide, nitro, carboxylic acid, disulfide, carbonate, isocyanate, carbodiimide, carboalkoxy, carbamate, and halogen. The inclusion of an imidazolidine ligand to the previously described ruthenium or osmium catalysts has been found to dramatically improve the properties of theses complexes. The inventive catalysts maintains the functional group tolerance of previously described ruthenium complexes while having enhanced metathesis activity that compares favorably to prior art tungsten and molybdenum systems.

121 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Dehydroisomerization of Limonene and Terpenes To Produce Cymene 2481 4.2.1.
Abstract: 3.2.3. Hydroformylation 2467 3.2.4. Dimerization 2468 3.2.5. Oxidative Cleavage and Ozonolysis 2469 3.2.6. Metathesis 2470 4. Terpenes 2472 4.1. Pinene 2472 4.1.1. Isomerization: R-Pinene 2472 4.1.2. Epoxidation of R-Pinene 2475 4.1.3. Isomerization of R-Pinene Oxide 2477 4.1.4. Hydration of R-Pinene: R-Terpineol 2478 4.1.5. Dehydroisomerization 2479 4.2. Limonene 2480 4.2.1. Isomerization 2480 4.2.2. Epoxidation: Limonene Oxide 2480 4.2.3. Isomerization of Limonene Oxide 2481 4.2.4. Dehydroisomerization of Limonene and Terpenes To Produce Cymene 2481

5,127 citations

Journal ArticleDOI
TL;DR: N-Heterocyclic carbenes have become universal ligands in organometallic and inorganic coordination chemistry as mentioned in this paper, and they not only bind to any transition metal, be it in low or high oxidation states, but also to main group elements such as beryllium, sulfur, and iodine.
Abstract: N-Heterocyclic carbenes have become universal ligands in organometallic and inorganic coordination chemistry. They not only bind to any transition metal, be it in low or high oxidation states, but also to main group elements such as beryllium, sulfur, and iodine. Because of their specific coordination chemistry, N-heterocyclic carbenes both stabilize and activate metal centers in quite different key catalytic steps of organic syntheses, for example, C-H activation, C-C, C-H, C-O, and C-N bond formation. There is now ample evidence that in the new generation of organometallic catalysts the established ligand class of organophosphanes will be supplemented and, in part, replaced by N-heterocyclic carbenes. Over the past few years, this chemistry has been the field of vivid scientific competition, and yielded previously unexpected successes in key areas of homogeneous catalysis. From the work in numerous academic laboratories and in industry, a revolutionary turning point in oraganometallic catalysis is emerging.

3,388 citations

Journal ArticleDOI
TL;DR: The discussion includes an analysis of trends in catalyst activity, a description of catalysts coordinated with N-heterocyclic carbene ligands, and an overview of ongoing work to improve the activity, stability, and selectivity of this family of L2X2Ru=CHR complexes.
Abstract: In recent years, the olefin metathesis reaction has attracted widespread attention as a versatile carbon−carbon bond-forming method. Many new applications have become possible because of major advances in catalyst design. State-of-the-art ruthenium catalysts are not only highly active but also compatible with most functional groups and easy to use. This Account traces the ideas and discoveries that were instrumental in the development of these catalysts, with particular emphasis on (PCy3)2Cl2RuCHPh and its derivatives. The discussion includes an analysis of trends in catalyst activity, a description of catalysts coordinated with N-heterocyclic carbene ligands, and an overview of ongoing work to improve the activity, stability, and selectivity of this family of L2X2RuCHR complexes.

3,229 citations

Journal ArticleDOI
TL;DR: New methods for the synthesis of complexes with N-heterocyclic carbene ligands such as the oxidative addition or the metal atom template controlled cyclized isocyanides have been developed recently.
Abstract: The chemistry of heterocyclic carbenes has experienced a rapid development over the last years. In addition to the imidazolin-2-ylidenes, a large number of cyclic diaminocarbenes with different ring sizes have been described. Aside from diaminocarbenes, P-heterocyclic carbenes, and derivatives with only one, or even no heteroatom within the carbene ring are known. New methods for the synthesis of complexes with N-heterocyclic carbene ligands such as the oxidative addition or the metal atom template controlled cyclization of β-functionalized isocyanides have been developed recently. This review summarizes the new developments regarding the synthesis of N-heterocyclic carbenes and their metal complexes.

2,454 citations