scispace - formally typeset
Search or ask a question
Author

Matthias Schultz

Bio: Matthias Schultz is an academic researcher from University of Hamburg. The author has contributed to research in topics: Lichen & Genus. The author has an hindex of 14, co-authored 68 publications receiving 2676 citations. Previous affiliations of Matthias Schultz include Kaiserslautern University of Technology.
Topics: Lichen, Genus, Verrucaria, Monophyly, Ecology


Papers
More filters
Journal ArticleDOI
19 Oct 2006-Nature
TL;DR: It is indicated that there may have been at least four independent losses of the flagellum in the kingdom Fungi, and the enigmatic microsporidia seem to be derived from an endoparasitic chytrid ancestor similar to Rozella allomycis, on the earliest diverging branch of the fungal phylogenetic tree.
Abstract: The ancestors of fungi are believed to be simple aquatic forms with flagellated spores, similar to members of the extant phylum Chytridiomycota (chytrids). Current classifications assume that chytrids form an early-diverging clade within the kingdom Fungi and imply a single loss of the spore flagellum, leading to the diversification of terrestrial fungi. Here we develop phylogenetic hypotheses for Fungi using data from six gene regions and nearly 200 species. Our results indicate that there may have been at least four independent losses of the flagellum in the kingdom Fungi. These losses of swimming spores coincided with the evolution of new mechanisms of spore dispersal, such as aerial dispersal in mycelial groups and polar tube eversion in the microsporidia (unicellular forms that lack mitochondria). The enigmatic microsporidia seem to be derived from an endoparasitic chytrid ancestor similar to Rozella allomycis, on the earliest diverging branch of the fungal phylogenetic tree.

1,682 citations

Journal ArticleDOI
TL;DR: Pezizomycotina is the largest subphylum of Ascomycota and includes the vast majority of filamentous, ascoma-producing species, and the seven remaining classes formed a monophyletic group that corresponds to Leotiomyceta.
Abstract: Pezizomycotina is the largest subphylum of Ascomycota and includes the vast majority of filamen- tous, ascoma-producing species. Here we report the results from weighted parsimony, maximum likelihood and Bayesian phylogenetic analyses of five nuclear loci (SSU rDNA, LSU rDNA, RPB1, RPB2 and EF-1a) from 191 taxa. Nine of the 10 Pezizomycotina classes currently recognized were represented in the sam- pling. These data strongly supported the monophyly of Pezizomycotina, Arthoniomycetes, Eurotiomycetes, Orbiliomycetes and Sordariomycetes. Pezizomycetes and Dothideomycetes also were resolved as mono- phyletic but not strongly supported by the data. Lecanoromycetes was resolved as paraphyletic in parsimony analyses but monophyletic in maximum likelihood and Bayesian analyses. Leotiomycetes was polyphyletic due to exclusion of Geoglossaceae. The two most basal classes of Pezizomycotina were Orbilio- mycetes and Pezizomycetes, both of which comprise species that produce apothecial ascomata. The seven

343 citations

Journal ArticleDOI
H. Thorsten Lumbsch1, Teuvo Ahti2, Susanne Altermann3, Guillermo Amo de Paz4, André Aptroot, Ulf Arup, Alejandrina Barcenas Peña5, Paulina A. Bawingan6, Michel Navarro Benatti, Luisa Betancourt, Curtis R. Björk7, Kansri Boonpragob8, Maarten Brand, Frank Bungartz9, Marcela Eugenia da Silva Cáceres, Mehtmet Candan10, José Luis Chaves, Philippe Clerc, Ralph S. Common, Brian J. Coppins11, Ana Crespo4, Manuela Dal-Forno12, Pradeep K. Divakar4, Melizar V. Duya13, John A. Elix14, Arve Elvebakk15, Johnathon D. Fankhauser16, Edith Farkas17, Lidia Itati Ferraro18, Eberhard Fischer19, David J. Galloway20, Ester Gaya21, Mireia Giralt, Trevor Goward22, Martin Grube23, Josef Hafellner23, Jesús E. Hernández M., Maria de los Angeles Herrera Campos5, Klaus Kalb, Ingvar Kärnefelt, Gintaras Kantvilas, Dorothee Killmann19, Paul M. Kirika, Kerry Knudsen24, Harald Komposch, Sergey Y. Kondratyuk, James D. Lawrey12, Armin Mangold, Marcelo Pinto Marcelli, Bruce McCune25, María Inés Messuti26, Andrea Michlig18, Ricardo Miranda González5, Bibiana Moncada, Alifereti Naikatini27, Matthew P. Nelsen28, Dag Olav Øvstedal29, Zdenek Palice30, Zdenek Palice31, Khwanruan Papong32, Sittiporn Parnmen8, Sergio Pérez-Ortega4, Christian Printzen, Víctor J. Rico4, Eimy Rivas Plata33, Javier Robayo, Dania Rosabal34, Ulrike Ruprecht35, Noris Salazar Allen36, Leopoldo G. Sancho4, Luciana Santo de Jesus, Tamires dos Santos Vieira, Matthias Schultz37, Mark R. D. Seaward38, Emmanuël Sérusiaux39, Imke Schmitt40, Harrie J. M. Sipman, Mohammad Sohrabi2, Ulrik Søchting41, Majbrit Zeuthen Søgaard41, Laurens B. Sparrius, Adriano Afonso Spielmann, Toby Spribille23, Jutarat Sutjaritturakan42, Achra Thammathaworn43, Arne Thell, Göran Thor44, Holger Thüs45, Einar Timdal46, Camille Truong, Roman Türk35, Loengrin Umana Tenorio, Dalip K. Upreti47, Pieter P. G. van den Boom, Mercedes Rebuelta4, Mats Wedin, Susan Will-Wolf48, Volkmar Wirth49, Nora Wirtz, Rebecca Yahr11, Kumelachew Yeshitela19, Frauke Ziemmeck9, Tim Wheeler, Robert Lücking1 
Field Museum of Natural History1, American Museum of Natural History2, University of California, Santa Cruz3, Complutense University of Madrid4, National Autonomous University of Mexico5, Saint Louis University6, University of Idaho7, Ramkhamhaeng University8, Charles Darwin Foundation9, Anadolu University10, Royal Botanic Garden Edinburgh11, George Mason University12, Conservation International13, Australian National University14, University of Tromsø15, University of Minnesota16, Hungarian Academy of Sciences17, National University of the Northeast18, University of Koblenz and Landau19, Landcare Research20, University of Barcelona21, University of British Columbia22, University of Graz23, University of California, Riverside24, Oregon University System25, National Scientific and Technical Research Council26, University of the South Pacific27, University of Chicago28, University of Bergen29, Charles University in Prague30, Academy of Sciences of the Czech Republic31, Mahasarakham University32, University of Illinois at Chicago33, Universidad de Oriente34, University of Salzburg35, Smithsonian Tropical Research Institute36, University of Hamburg37, University of Bradford38, University of Liège39, Goethe University Frankfurt40, University of Copenhagen41, King Mongkut's Institute of Technology Ladkrabang42, Khon Kaen University43, Swedish University of Agricultural Sciences44, Natural History Museum45, University of Oslo46, Council of Scientific and Industrial Research47, University of Wisconsin-Madison48, Museum für Naturkunde49
TL;DR: A total of 100 new species of lichenized fungi are described, representing a wide taxonomic and geographic range, and emphasizing the dire need for taxonomic expertise in lichenology.
Abstract: The number of undescribed species of lichenized fungi has been estimated at roughly 10,000. Describing and cataloging these would take the existing number of taxonomists several decades; however, the support for taxonomy is in decline worldwide. In this paper we emphasize the dire need for taxonomic expertise in lichenology. We bring together 103 colleagues from institutions worldwide to describe a total of 100 new species of lichenized fungi, representing a wide taxonomic and geographic range. The newly described species are: Acarospora flavisparsa, A. janae, Aderkomyces thailandicus, Amandinea maritima, Ampliotrema cocosense, Anomomorpha lecanorina, A. tuberculata, Aspicilia mansourii, Bacidina sorediata, Badimia multiseptata, B. vezdana, Biatora epirotica, Buellia sulphurica, Bunodophoron pinnatum, Byssoloma spinulosum, Calopadia cinereopruinosa, C. editae, Caloplaca brownlieae, C. decipioides, C. digitaurea, C. magnussoniana, C. mereschkowskiana, C. yorkensis, Calvitimela uniseptata, Chapsa microspora, C. psoromica, C. rubropulveracea, C. thallotrema, Chiodecton pustuliferum, Cladonia mongkolsukii, Clypeopyrenis porinoides, Coccocarpia delicatula, Coenogonium flammeum, Cresponea ancistrosporelloides, Crocynia microphyllina, Dictyonema hernandezii, D. hirsutum, Diorygma microsporum, D. sticticum, Echinoplaca pernambucensis, E. schizidiifera, Eremithallus marusae, Everniastrum constictovexans, Fellhanera borbonica, Fibrillithecis sprucei, Fissurina astroisidiata, F. nigrolabiata, F. subcomparimuralis, Graphis caribica, G. cerradensis, G. itatiaiensis, G. marusa, Gyalideopsis chicaque, Gyrotrema papillatum, Harpidium gavilaniae, Hypogymnia amplexa, Hypotrachyna guatemalensis, H. indica, H. lueckingii, H. paracitrella, H. paraphyscioides, H. parasinuosa, Icmadophila eucalypti, Krogia microphylla, Lecanora mugambii, L. printzenii, L. xanthoplumosella, Lecidea lygommella, Lecidella greenii, Lempholemma corticola, Lepraria sekikaica, Lobariella sipmanii, Megalospora austropacifica, M. galapagoensis, Menegazzia endocrocea, Myriotrema endoflavescens, Ocellularia albobullata, O. vizcayensis, Ochrolechia insularis, Opegrapha viridipruinosa, Pannaria phyllidiata, Parmelia asiatica, Pertusaria conspersa, Phlyctis psoromica, Placopsis imshaugii, Platismatia wheeleri, Porina huainamdungensis, Ramalina hyrcana, R. stoffersii, Relicina colombiana, Rhizocarpon diploschistidina, Sticta venosa, Sagenidiopsis isidiata, Tapellaria albomarginata, Thelotrema fijiense, Tricharia nigriuncinata, Usnea galapagona, U. pallidocarpa, Verrucaria rhizicola, and Xanthomendoza rosmarieae. In addition, three new combinations are proposed: Fibrillithecis dehiscens, Lobariella botryoides, and Lobariella pallida.

215 citations

Journal ArticleDOI
TL;DR: An evaluation of literature and recent collections made by Iranian researchers resulted in a list of 396 species of lichenized fungi and eight species ofLichenicolous or allied fungi for Iran, of which 97 species are new for Iran while some species not confirmed by recent collections are doubtful.
Abstract: Seaward, M. R. D., Sipman, H. J. M., Schultz, M., Maassoumi, A. A., Haji Moniri Anbaran, M. & Sohrabi, M.: A preliminary lichen checklist for Iran. – Willdenowia 34: 543-576. – ISSN 0511-9618; © 2004 BGBM Berlin-Dahlem. An evaluation of literature and recent collections made by Iranian researchers resulted in a list of 396 species of lichenized fungi and eight species of lichenicolous or allied fungi for Iran. Of these, 97 species are new for Iran while some species not confirmed by recent collections are doubtful. Pertinent literature references and, for the newly reported species, locality and collection data are presented.

46 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Among the regions of the ribosomal cistron, the internal transcribed spacer (ITS) region has the highest probability of successful identification for the broadest range of fungi, with the most clearly defined barcode gap between inter- and intraspecific variation.
Abstract: Six DNA regions were evaluated as potential DNA barcodes for Fungi, the second largest kingdom of eukaryotic life, by a multinational, multilaboratory consortium. The region of the mitochondrial cytochrome c oxidase subunit 1 used as the animal barcode was excluded as a potential marker, because it is difficult to amplify in fungi, often includes large introns, and can be insufficiently variable. Three subunits from the nuclear ribosomal RNA cistron were compared together with regions of three representative protein-coding genes (largest subunit of RNA polymerase II, second largest subunit of RNA polymerase II, and minichromosome maintenance protein). Although the protein-coding gene regions often had a higher percent of correct identification compared with ribosomal markers, low PCR amplification and sequencing success eliminated them as candidates for a universal fungal barcode. Among the regions of the ribosomal cistron, the internal transcribed spacer (ITS) region has the highest probability of successful identification for the broadest range of fungi, with the most clearly defined barcode gap between inter- and intraspecific variation. The nuclear ribosomal large subunit, a popular phylogenetic marker in certain groups, had superior species resolution in some taxonomic groups, such as the early diverging lineages and the ascomycete yeasts, but was otherwise slightly inferior to the ITS. The nuclear ribosomal small subunit has poor species-level resolution in fungi. ITS will be formally proposed for adoption as the primary fungal barcode marker to the Consortium for the Barcode of Life, with the possibility that supplementary barcodes may be developed for particular narrowly circumscribed taxonomic groups.

4,116 citations

Journal ArticleDOI
TL;DR: An enhanced understanding of the skin microbiome is necessary to gain insight into microbial involvement in human skin disorders and to enable novel promicrobial and antimicrobial therapeutic approaches for their treatment.
Abstract: The skin is the human body's largest organ, colonized by a diverse milieu of microorganisms, most of which are harmless or even beneficial to their host. Colonization is driven by the ecology of the skin surface, which is highly variable depending on topographical location, endogenous host factors and exogenous environmental factors. The cutaneous innate and adaptive immune responses can modulate the skin microbiota, but the microbiota also functions in educating the immune system. The development of molecular methods to identify microorganisms has led to an emerging view of the resident skin bacteria as highly diverse and variable. An enhanced understanding of the skin microbiome is necessary to gain insight into microbial involvement in human skin disorders and to enable novel promicrobial and antimicrobial therapeutic approaches for their treatment.

2,279 citations

Journal ArticleDOI
TL;DR: It is shown that NC-endophytes represent three distinct functional groups based on host colonization and transmission, in planta biodiversity and fitness benefits conferred to hosts, and key questions for future work in endophyte biology are highlighted.
Abstract: Summary 1 Summary All plants in natural ecosystems appear to be symbiotic with fungal endophytes. This highly diverse group of fungi can have profound impacts on plant communities through increasing fitness by conferring abiotic and biotic stress tolerance, increasing biomass and decreasing water consumption, or decreasing fitness by altering resource allocation. Despite more than 100 yr of research resulting in thousands of journal articles, the ecological significance of these fungi remains poorly characterized. Historically, two endophytic groups (clavicipitaceous (C) and nonclavicipitaceous (NC)) have been discriminated based on phylogeny and life history traits. Here, we show that NC-endophytes represent three distinct functional groups based on host colonization and transmission, in planta biodiversity and fitness benefits conferred to hosts. Using this framework, we contrast the life histories, interactions with hosts and potential roles in plant ecophysiology of C- and NC-endophytes, and highlight several key questions for future work in endophyte biology.

2,278 citations

Journal ArticleDOI
TL;DR: A comprehensive phylogenetic classification of the kingdom Fungi is proposed, with reference to recent molecular phylogenetic analyses, and with input from diverse members of the fungal taxonomic community.

2,096 citations

Journal ArticleDOI
29 Jun 2012-Science
TL;DR: Comparative analyses of 31 fungal genomes suggest that lignin-degrading peroxidases expanded in the lineage leading to the ancestor of the Agaricomycetes, which is reconstructed as a white rot species, and then contracted in parallel lineages leading to brown rot and mycorrhizal species.
Abstract: Wood is a major pool of organic carbon that is highly resistant to decay, owing largely to the presence of lignin. The only organisms capable of substantial lignin decay are white rot fungi in the Agaricomycetes, which also contains non-lignin-degrading brown rot and ectomycorrhizal species. Comparative analyses of 31 fungal genomes (12 generated for this study) suggest that lignin-degrading peroxidases expanded in the lineage leading to the ancestor of the Agaricomycetes, which is reconstructed as a white rot species, and then contracted in parallel lineages leading to brown rot and mycorrhizal species. Molecular clock analyses suggest that the origin of lignin degradation might have coincided with the sharp decrease in the rate of organic carbon burial around the end of the Carboniferous period.

1,396 citations