scispace - formally typeset
Search or ask a question
Author

Matthijs H. D. van der Wiel

Other affiliations: ASTRON
Bio: Matthijs H. D. van der Wiel is an academic researcher from University of Lethbridge. The author has contributed to research in topics: Imaging spectroscopy & Spire. The author has an hindex of 5, co-authored 14 publications receiving 196 citations. Previous affiliations of Matthijs H. D. van der Wiel include ASTRON.

Papers
More filters
Journal ArticleDOI
TL;DR: A series of observations and the analysis conducted to determine the wavelength dependence of the SPIRE spectrometer beam profile are described.
Abstract: One of the instruments on board the Herschel Space Observatory is the Spectral and Photometric Imaging Receiver (SPIRE). SPIRE employs a Fourier transform spectrometer with feed-horn-coupled bolometers to provide imaging spectroscopy. To interpret the resultant spectral images requires knowledge of the wavelength-dependent beam, which in the case of SPIRE is complicated by the use of multimoded feed horns. In this paper we describe a series of observations and the analysis conducted to determine the wavelength dependence of the SPIRE spectrometer beam profile.

54 citations

Journal ArticleDOI
TL;DR: In this article, the authors derived the necessary corrections using an observed spectrum of a fully extended source with the beam profile and the source's light profile taken into account, and applied the derived correction to several observations of planets and compared the corrected spectra with their spectral models to study the beam coupling efficiency.
Abstract: The Spectral and Photometric Imaging Receiver (SPIRE) on the European Space Agency's Herschel Space Observatory utilizes a pioneering design for its imaging spectrometer in the form of a Fourier Transform Spectrometer (FTS). The standard FTS data reduction and calibration schemes are aimed at objects with either a spatial extent much larger than the beam size or a source that can be approximated as a point source within the beam. However, when sources are of intermediate spatial extent, neither of these calibrations schemes is appropriate and both the spatial response of the instrument and the source's light profile must be taken into account and the coupling between them explicitly derived. To that end, we derive the necessary corrections using an observed spectrum of a fully extended source with the beam profile and the source's light profile taken into account. We apply the derived correction to several observations of planets and compare the corrected spectra with their spectral models to study the beam coupling efficiency of the instrument in the case of partially extended sources. We find that we can apply these correction factors for sources with angular sizes up to \theta_{D} ~ 17". We demonstrate how the angular size of an extended source can be estimated using the difference between the sub-spectra observed at the overlap bandwidth of the two frequency channels in the spectrometer, at 959< u<989 GHz. Using this technique on an observation of Saturn, we estimate a size of 17.2", which is 3% larger than its true size on the day of observation. Finally, we show the results of the correction applied on observations of a nearby galaxy, M82, and the compact core of a Galactic molecular cloud, Sgr B2.

53 citations

Journal ArticleDOI
TL;DR: In this paper, the authors combine observations from the Herschel Space Observatory with ancillary data of 284 protoplanetary disks in the Taurus, Chamaeleon I, and Ophiuchus star-forming regions, covering from the optical to mm/cm wavelengths.
Abstract: Far-infrared and (sub)millimeter fluxes can be used to study dust in protoplanetary disks, the building blocks of planets. Here, we combine observations from the Herschel Space Observatory with ancillary data of 284 protoplanetary disks in the Taurus, Chamaeleon I, and Ophiuchus star-forming regions, covering from the optical to mm/cm wavelengths. We analyze their spectral indices as a function of wavelength and determine their (sub)millimeter slopes when possible. Most disks display observational evidence of grain growth, in agreement with previous studies. No correlation is found between other tracers of disk evolution and the millimeter spectral indices. A simple disk model is used to fit these sources, and we derive posterior distributions for the optical depth at 1.3 mm and 10 au, the disk temperature at this same radius, and the dust opacity spectral index. We find the fluxes at 70 microns to correlate strongly with disk temperatures at 10 au, as derived from these simple models. We find tentative evidence for spectral indices in Chamaeleon I being steeper than those of disks in Taurus/Ophiuchus, although more millimeter observations are needed to confirm this trend and identify its possible origin. Additionally, we determine the median spectral energy distribution of each region and find them to be similar across the entire wavelength range studied, possibly due to the large scatter in disk properties and morphologies.

52 citations

Journal ArticleDOI
TL;DR: In this article, the authors combine observations from the Herschel Space Observatory with ancillary data of 284 protoplanetary disks in the Taurus, Chamaeleon I, and Ophiuchus star-forming regions, covering from the optical to mm/cm wavelengths.
Abstract: Far-infrared and (sub)millimeter fluxes can be used to study dust in protoplanetary disks, the building blocks of planets. Here, we combine observations from the Herschel Space Observatory with ancillary data of 284 protoplanetary disks in the Taurus, Chamaeleon I, and Ophiuchus star-forming regions, covering from the optical to mm/cm wavelengths. We analyze their spectral indices as a function of wavelength and determine their (sub)millimeter slopes when possible. Most disks display observational evidence of grain growth, in agreement with previous studies. No correlation is found between other tracers of disk evolution and the millimeter spectral indices. A simple disk model is used to fit these sources, and we derive posterior distributions for the optical depth at 1.3 mm and 10 au, the disk temperature at this same radius, and the dust opacity spectral index. We find the fluxes at 70 microns to correlate strongly with disk temperatures at 10 au, as derived from these simple models. We find tentative evidence for spectral indices in Chamaeleon I being steeper than those of disks in Taurus/Ophiuchus, although more millimeter observations are needed to confirm this trend and identify its possible origin. Additionally, we determine the median spectral energy distribution of each region and find them to be similar across the entire wavelength range studied, possibly due to the large scatter in disk properties and morphologies.

37 citations

Proceedings ArticleDOI
TL;DR: The Spectral and Photometric Imaging Receiver (SPIRE) is one of three scientific instruments on board the European Space Agency's Herschel Space Observatory which ended its operational phase on 29 April 2013 as mentioned in this paper.
Abstract: The Spectral and Photometric Imaging Receiver (SPIRE) is one of three scientific instruments on board the European Space Agency's Herschel Space Observatory which ended its operational phase on 29 April 2013. The low to medium resolution spectroscopic capability of SPIRE is provided by an imaging Fourier transform spectrometer (iFTS) of the Mach-Zehnder configuration. With their high throughput, broad spectral coverage, and variable resolution, coupled with their well-defined instrumental line shape and intrinsic wavelength and intensity calibration, iFTS are becoming increasingly common in far-infrared space astronomy missions. The performance of the SPIRE imaging spectrometer will be reviewed and example results presented. The lessons learned from the measured performance of the spectrometer as they apply to future missions will be discussed.

6 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Disk Substructures at High Angular Resolution Project (DSHARP) as mentioned in this paper was the first large-scale project to find and characterize substructures in the spatial distributions of solid particles for a sample of 20 nearby protoplanetary disks, using very high resolution (similar to 0'' 035 or 5 au, FWHM) observations of their 240 GHz (1.25 mm) continuum emission.
Abstract: We introduce the Disk Substructures at High Angular Resolution Project (DSHARP), one of the initial Large Programs conducted with the Atacama Large Millimeter/submillimeter Array (ALMA). The primary goal of DSHARP is to find and characterize substructures in the spatial distributions of solid particles for a sample of 20 nearby protoplanetary disks, using very high resolution (similar to 0.'' 035, or 5 au, FWHM) observations of their 240 GHz (1.25 mm) continuum emission. These data provide a first homogeneous look at the small-scale features in disks that are directly relevant to the planet formation process, quantifying their prevalence, morphologies, spatial scales, spacings, symmetry, and amplitudes, for targets with a variety of disk and stellar host properties. We find that these substructures are ubiquitous in this sample of large, bright disks. They are most frequently manifested as concentric, narrow emission rings and depleted gaps, although large-scale spiral patterns and small arc-shaped azimuthal asymmetries are also present in some cases. These substructures are found at a wide range of disk radii (from a few astronomical units to more than 100 au), are usually compact (less than or similar to 10 au), and show a wide range of amplitudes (brightness contrasts). Here we discuss the motivation for the project, describe the survey design and the sample properties, detail the observations and data calibration, highlight some basic results, and provide a general overview of the key conclusions that are presented in more detail in a series of accompanying articles. The DSHARP data-including visibilities, images, calibration scripts, and more-are released for community use at https://almascience.org/alma-data/lp/DSHARP.

822 citations

Journal ArticleDOI
TL;DR: In this paper, the composition of interstellar dust and power-law size distribution dn/da propto a^{-p} for a 3 lambda and 3 3 mm will result in beta(1 mm) ~ 3 lambda.
Abstract: Solid particles with the composition of interstellar dust and power-law size distribution dn/da propto a^{-p} for a 3 lambda and 3 3 mm will result in beta(1 mm) ~ 3 lambda.

325 citations

Journal ArticleDOI
TL;DR: In this article, the Atacama Large Millimeter/Sub-Millimeter Array (ALMA) Band 6 observations of a complete sample of protoplanetary disks in the young (~1-3 Myr) Lupus star-forming region, covering the 1.33 mm continuum and the 12CO, 13CO and C18O J = 2-1 lines.
Abstract: We present Atacama Large Millimeter/Sub-Millimeter Array (ALMA) Band 6 observations of a complete sample of protoplanetary disks in the young (~1–3 Myr) Lupus star-forming region, covering the 1.33 mm continuum and the 12CO, 13CO, and C18O J = 2–1 lines. The spatial resolution is ~0farcs25 with a medium 3σ continuum sensitivity of 0.30 mJy, corresponding to M dust ~ 0.2 M ⊕. We apply Keplerian masking to enhance the signal-to-noise ratios of our 12CO zero-moment maps, enabling measurements of gas disk radii for 22 Lupus disks; we find that gas disks are universally larger than millimeter dust disks by a factor of two on average, likely due to a combination of the optically thick gas emission and the growth and inward drift of the dust. Using the gas disk radii, we calculate the dimensionless viscosity parameter, α visc, finding a broad distribution and no correlations with other disk or stellar parameters, suggesting that viscous processes have not yet established quasi-steady states in Lupus disks. By combining our 1.33 mm continuum fluxes with our previous 890 μm continuum observations, we also calculate the millimeter spectral index, α mm, for 70 Lupus disks; we find an anticorrelation between α mm and millimeter flux for low-mass disks (M dust lesssim 5), followed by a flattening as disks approach α mm ≈ 2, which could indicate faster grain growth in higher-mass disks, but may also reflect their larger optically thick components. In sum, this work demonstrates the continuous stream of new insights into disk evolution and planet formation that can be gleaned from unbiased ALMA disk surveys.

310 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present FIR [50-300 mu m]-CO luminosity relations (i.e., log L-FIR = alpha log L'(CO) + beta) for the full CO rotational ladder from J = 1-0 up to J = 13-12 for a sample of 62 local (z 10(11) L-circle dot) LIRGs using data from Herschel SPIRE-FTS and ground-based telescopes.
Abstract: We present FIR [50-300 mu m]-CO luminosity relations (i.e., log L-FIR = alpha log L'(CO) + beta) for the full CO rotational ladder from J = 1-0 up to J = 13-12 for a sample of 62 local (z 10(11) L-circle dot) using data from Herschel SPIRE-FTS and ground-based telescopes. We extend our sample to high redshifts (z > 1) by including 35 submillimeter selected dusty star forming galaxies from the literature with robust CO observations, and sufficiently well-sampled FIR/submillimeter spectral energy distributions (SEDs), so that accurate FIR luminosities can be determined. The addition of luminous starbursts at high redshifts enlarge the range of the FIR-CO luminosity relations toward the high-IR-luminosity end, while also significantly increasing the small amount of mid-J/high-J CO line data (J = 5-4 and higher) that was available prior to Herschel. This new data set (both in terms of IR luminosity and J-ladder) reveals linear FIR-CO luminosity relations (i.e., a similar or equal to 1) for J = 1-0 up to J = 5-4, with a nearly constant normalization (beta similar to 2). In the simplest physical scenario, this is expected from the (also) linear FIR-(molecular line) relations recently found for the dense gas tracer lines (HCN and CS), as long as the dense gas mass fraction does not vary strongly within our (merger/starburst)-dominated sample. However, from J = 6-5 and up to the J = 13-12 transition, we find an increasingly sublinear slope and higher normalization constant with increasing J. We argue that these are caused by a warm (similar to 100 K) and dense (>10(4) cm(-3)) gas component whose thermal state is unlikely to be maintained by star-formation-powered far-UV radiation fields (and thus is no longer directly tied to the star formation rate). We suggest that mechanical heating (e.g., supernova-driven turbulence and shocks), and not cosmic rays, is the more likely source of energy for this component. The global CO spectral line energy distributions, which remain highly excited from J = 6-5 up to J = 13-12, are found to be a generic feature of the (U)LIRGs in our sample, and further support the presence of this gas component.

166 citations