scispace - formally typeset
Search or ask a question
Author

Matti Lehtonen

Bio: Matti Lehtonen is an academic researcher from Aalto University. The author has contributed to research in topics: Fault (power engineering) & Electric power system. The author has an hindex of 40, co-authored 694 publications receiving 8559 citations. Previous affiliations of Matti Lehtonen include Razi University & New York University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a methodology for detecting on-line PDs produced because of falling trees on the covered-conductor (CC) overhead distribution lines is introduced and calibration of PD measuring system is carried out.
Abstract: Partial discharge (PD) detection has been regarded as one of the most effective on-line predictive maintenance test and diagnostic tool for the condition monitoring of high voltage (HV) equipment. In this study, a methodology for detecting on-line PDs produced because of falling trees on the covered-conductor (CC) overhead distribution lines is introduced and calibration of PD measuring system is carried-out. The Rogowski coil is used as a PD sensor which is non-intrusive and superior to the conventional PD detectors. The experimental set-up was arranged in the HV laboratory for real-time analysis and a pulse calibrator was used to calibrate the PD measuring system. Few real-life PD measurements have been taken and it is revealed that PD magnitudes and signals bandwidth may vary under various circumstances. The calibrated on-line PD measuring system can be used to detect and measure the amount of PDs produced because of falling trees on CC lines, thus improving the reliability and safety of the distribution networks as well as reducing visual inspection work after storms.

58 citations

Journal ArticleDOI
12 Jan 2021-Sensors
TL;DR: In this paper, a new infrastructure based on machine learning is introduced to analyze and monitor the output data of the smart meters to investigate if this data is real data or fake, and the proposed infrastructure validates the amount of data loss via communication channels and the internet connection.
Abstract: The modern control infrastructure that manages and monitors the communication between the smart machines represents the most effective way to increase the efficiency of the industrial environment, such as smart grids. The cyber-physical systems utilize the embedded software and internet to connect and control the smart machines that are addressed by the internet of things (IoT). These cyber-physical systems are the basis of the fourth industrial revolution which is indexed by industry 4.0. In particular, industry 4.0 relies heavily on the IoT and smart sensors such as smart energy meters. The reliability and security represent the main challenges that face the industry 4.0 implementation. This paper introduces a new infrastructure based on machine learning to analyze and monitor the output data of the smart meters to investigate if this data is real data or fake. The fake data are due to the hacking and the inefficient meters. The industrial environment affects the efficiency of the meters by temperature, humidity, and noise signals. Furthermore, the proposed infrastructure validates the amount of data loss via communication channels and the internet connection. The decision tree is utilized as an effective machine learning algorithm to carry out both regression and classification for the meters’ data. The data monitoring is carried based on the industrial digital twins’ platform. The proposed infrastructure results provide a reliable and effective industrial decision that enhances the investments in industry 4.0.

58 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a new IoT architecture based on utilizing machine learning techniques to suppress cyber-attacks for providing reliable and secure online monitoring for the induction motor status, in which advanced machine learning technique are utilized here to detect cyberattacks and motor status with high accuracy.
Abstract: In recent years, the internet of things (IoT) represents the main core of Industry 4.0 for cyber-physic systems (CPS) in order to improve the industrial environment. Accordingly, the application of IoT and CPS has been expanded in applied electrical systems and machines. However, cybersecurity represents the main challenge of the implementation of IoT against cyber-attacks. In this regard, this paper proposes a new IoT architecture based on utilizing machine learning techniques to suppress cyber-attacks for providing reliable and secure online monitoring for the induction motor status. In particular, advanced machine learning techniques are utilized here to detect cyber-attacks and motor status with high accuracy. The proposed infrastructure validates the motor status via communication channels and the internet connection with economical cost and less effort on connecting various networks. For this purpose, the CONTACT Element platform for IoT is adopted to visualize the processed data based on machine learning techniques through a graphical dashboard. Once the cyber-attacks signal has been detected, the proposed IoT platform based on machine learning will be visualized automatically as fake data on the dashboard of the IoT platform. Different experimental scenarios with data acquisition are carried out to emphasize the performance of the suggested IoT topology. The results confirm that the proposed IoT architecture based on the machine learning technique can effectively visualize all faults of the motor status as well as the cyber-attacks on the networks. Moreover, all faults of the motor status and the fake data, due to the cyber-attacks, are successfully recognized and visualized on the dashboard of the proposed IoT platform with high accuracy and more clarified visualization, thereby contributing to enhancing the decision-making about the motor status. Furthermore, the introduced IoT architecture with Random Forest algorithm provides an effective detection for the faults on motor due to the vibration under industrial conditions with excellent accuracy of 99.03% that is significantly greater than the other machine learning algorithms. Besides, the proposed IoT has low latency to recognize the motor faults and cyber-attacks to present them in the main dashboard of the IoT platform.

58 citations

Journal ArticleDOI
TL;DR: In this article, the Rogowski coil is employed as a PD measuring sensor and a comparative study of variation in mechanical design features provides a brief guideline to select the optimal design of the coil.

58 citations

Journal ArticleDOI
TL;DR: In this article, an energy demand model is proposed for net-zero energy building (NZEB) definitions to represent personal mobility in the building's energy balance, and a mixed-integer linear optimization scheme is developed to address the energy management problem related to the aforementioned energy balance model.

56 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

Book
01 Jan 2009

8,216 citations

Book ChapterDOI
01 Jan 1982
TL;DR: In this article, the authors discuss leading problems linked to energy that the world is now confronting and propose some ideas concerning possible solutions, and conclude that it is necessary to pursue actively the development of coal, natural gas, and nuclear power.
Abstract: This chapter discusses leading problems linked to energy that the world is now confronting and to propose some ideas concerning possible solutions. Oil deserves special attention among all energy sources. Since the beginning of 1981, it has merely been continuing and enhancing the downward movement in consumption and prices caused by excessive rises, especially for light crudes such as those from Africa, and the slowing down of worldwide economic growth. Densely-populated oil-producing countries need to produce to live, to pay for their food and their equipment. If the economic growth of the industrialized countries were to be 4%, even if investment in the rational use of energy were pushed to the limit and the development of nonpetroleum energy sources were also pursued actively, it would be extremely difficult to prevent a sharp rise in prices. It is evident that it is absolutely necessary to pursue actively the development of coal, natural gas, and nuclear power if a physical shortage of energy is not to block economic growth.

2,283 citations