Author
Matti Saraste
Other affiliations: University of Helsinki, University of Bath, Northwestern University ...read more
Bio: Matti Saraste is an academic researcher from European Bioinformatics Institute. The author has contributed to research in topics: Cytochrome c oxidase & Cytochrome. The author has an hindex of 70, co-authored 131 publications receiving 21061 citations. Previous affiliations of Matti Saraste include University of Helsinki & University of Bath.
Topics: Cytochrome c oxidase, Cytochrome, Oxidase test, Cytochrome c, Spectrin
Papers published on a yearly basis
Papers
More filters
TL;DR: Related sequences in both alpha and beta and in other enzymes that bind ATP or ADP in catalysis help to identify regions contributing to an adenine nucleotide binding fold in both ATP synthase subunits.
Abstract: The alpha- and beta-subunits of membrane-bound ATP synthase complex bind ATP and ADP: beta contributes to catalytic sites, and alpha may be involved in regulation of ATP synthase activity. The sequences of beta-subunits are highly conserved in Escherichia coli and bovine mitochondria. Also alpha and beta are weakly homologous to each other throughout most of their amino acid sequences, suggesting that they have common functions in catalysis. Related sequences in both alpha and beta and in other enzymes that bind ATP or ADP in catalysis, notably myosin, phosphofructokinase, and adenylate kinase, help to identify regions contributing to an adenine nucleotide binding fold in both ATP synthase subunits.
5,191 citations
TL;DR: Current knowledge of P-loops is discussed with the additional aim of illustrating the fascinating relationship between protein sequence, structure and function.
Abstract: Many ATP- and GTP-binding proteins have a phosphate-binding loop (P-loop), the primary structure of which typically consists of a glycine-rich sequence followed by a conserved lysine and a serine or threonine The three-dimensional structures of several ATP- and GTP-binding proteins containing P-loops have now been solved In this review current knowledge of P-loops is discussed with the additional aim of illustrating the fascinating relationship between protein sequence, structure and function
1,972 citations
TL;DR: The measured force required to mechanically unfold spectrin repeats shows that the forces stabilizing the coiled-coil lead to a mechanically much weaker structure than multiple hydrogen-bonded beta-sheets.
Abstract: Spectrin repeats fold into triple helical coiled-coils comprising approximately 106 amino acid residues. Using an AFM-related technique we measured the force required to mechanically unfold these repeats to be 25 to 35 pN. Under tension, individual spectrin repeats unfold independently and in an all-or-none process. The dependence of the unfolding forces on the pulling speed reveals that the corresponding unfolding potential is shallow with an estimated width of 1.5 nm. When the unfolded polypeptide strand is relaxed, several domains refold within less than a second. The unfolding forces of the alpha-helical spectrin domains are five to ten times lower than those found in domains with beta-fold, like immunoglobulin or fibronectin Ill domains, where the tertiary structure is stabilized by hydrogen bonds between adjacent strands. This shows that the forces stabilizing the coiled-coil lead to a mechanically much weaker structure than multiple hydrogen-bonded beta-sheets.
572 citations
TL;DR: An extensive database search using a profile search method found a number of additional proteins that may contain PH domains, and identified a PH domain in beta-adrenergic receptor kinase exactly in the region that has already been shown to be involved in binding to the beta and gamma subunits of a heterotrimeric G protein.
Abstract: The ‘pleckstrin homology' domain is an approximately 100-residue protein module that has recently been added to the domain catalogue of signalling proteins. For this review we have made an extensive database search using a profile search method, and found a number of additional proteins that may contain PH domains. The PH domain is present in many kinases, isoforms of phospholipase C, GTPases, GTPase-activating proteins and nucleotide-exchange factors, including such proteins as Vav, Dbl and Bcr, and there are two PH domains in a guanine-nucleotide releasing factor of Ras. Many PH-domain-containing proteins interact with GTP-binding proteins. We have also identified a PH domain in β-adrenergic receptor kinase exactly in the region that has already been shown to be involved in binding to the β and γ subunits of a heterotrimeric G protein. This suggests that PH domains may be involved in interactions with GTP-binding proteins.
548 citations
498 citations
Cited by
More filters
TL;DR: The sensitivity of the commonly used progressive multiple sequence alignment method has been greatly improved and modifications are incorporated into a new program, CLUSTAL W, which is freely available.
Abstract: The sensitivity of the commonly used progressive multiple sequence alignment method has been greatly improved for the alignment of divergent protein sequences. Firstly, individual weights are assigned to each sequence in a partial alignment in order to down-weight near-duplicate sequences and up-weight the most divergent ones. Secondly, amino acid substitution matrices are varied at different alignment stages according to the divergence of the sequences to be aligned. Thirdly, residue-specific gap penalties and locally reduced gap penalties in hydrophilic regions encourage new gaps in potential loop regions rather than regular secondary structure. Fourthly, positions in early alignments where gaps have been opened receive locally reduced gap penalties to encourage the opening up of new gaps at these positions. These modifications are incorporated into a new program, CLUSTAL W which is freely available.
63,427 citations
TL;DR: Mutation of the active site of caspase-9 attenuated the activation of cazase-3 and cellular apoptotic response in vivo, indicating that casp enzyme-9 is the most upstream member of the apoptotic protease cascade that is triggered by cytochrome c and dATP.
Abstract: We report here the purification of the third protein factor, Apaf-3, that participates in caspase-3 activation in vitro. Apaf-3 was identified as a member of the caspase family, caspase-9. Caspase-9 and Apaf-1 bind to each other via their respective NH2-terminal CED-3 homologous domains in the presence of cytochrome c and dATP, an event that leads to caspase-9 activation. Activated caspase-9 in turn cleaves and activates caspase-3. Depletion of caspase-9 from S-100 extracts diminished caspase-3 activation. Mutation of the active site of caspase-9 attenuated the activation of caspase-3 and cellular apoptotic response in vivo, indicating that caspase-9 is the most upstream member of the apoptotic protease cascade that is triggered by cytochrome c and dATP.
7,231 citations
TL;DR: A deletion of three base pairs that results in the omission of a phenylalanine residue at the center of the first predicted nucleotide-binding domain was detected in CF patients.
Abstract: Overlapping complementary DNA clones were isolated from epithelial cell libraries with a genomic DNA segment containing a portion of the putative cystic fibrosis (CF) locus, which is on chromosome 7 Transcripts, approximately 6500 nucleotides in size, were detectable in the tissues affected in patients with CF The predicted protein consists of two similar motifs, each with (i) a domain having properties consistent with membrane association and (ii) a domain believed to be involved in ATP (adenosine triphosphate) binding A deletion of three base pairs that results in the omission of a phenylalanine residue at the center of the first predicted nucleotide-binding domain was detected in CF patients
6,731 citations
TL;DR: The description outlined here facilitates the understanding of factors that favour mitochondrial ROS production and develops better methods to measure mitochondrial O2•− and H2O2 formation in vivo, as uncertainty about these values hampers studies on the role of mitochondrial ROS in pathological oxidative damage and redox signalling.
Abstract: The production of ROS (reactive oxygen species) by mammalian mitochondria is important because it underlies oxidative damage in many pathologies and contributes to retrograde redox signalling from the organelle to the cytosol and nucleus. Superoxide (O2•−) is the proximal mitochondrial ROS, and in the present review I outline the principles that govern O2•− production within the matrix of mammalian mitochondria. The flux of O2•− is related to the concentration of potential electron donors, the local concentration of O2 and the second-order rate constants for the reactions between them. Two modes of operation by isolated mitochondria result in significant O2•− production, predominantly from complex I: (i) when the mitochondria are not making ATP and consequently have a high Δp (protonmotive force) and a reduced CoQ (coenzyme Q) pool; and (ii) when there is a high NADH/NAD+ ratio in the mitochondrial matrix. For mitochondria that are actively making ATP, and consequently have a lower Δp and NADH/NAD+ ratio, the extent of O2•− production is far lower. The generation of O2•− within the mitochondrial matrix depends critically on Δp, the NADH/NAD+ and CoQH2/CoQ ratios and the local O2 concentration, which are all highly variable and difficult to measure in vivo. Consequently, it is not possible to estimate O2•− generation by mitochondria in vivo from O2•−-production rates by isolated mitochondria, and such extrapolations in the literature are misleading. Even so, the description outlined here facilitates the understanding of factors that favour mitochondrial ROS production. There is a clear need to develop better methods to measure mitochondrial O2•− and H2O2 formation in vivo, as uncertainty about these values hampers studies on the role of mitochondrial ROS in pathological oxidative damage and redox signalling.
6,371 citations
TL;DR: Related sequences in both alpha and beta and in other enzymes that bind ATP or ADP in catalysis help to identify regions contributing to an adenine nucleotide binding fold in both ATP synthase subunits.
Abstract: The alpha- and beta-subunits of membrane-bound ATP synthase complex bind ATP and ADP: beta contributes to catalytic sites, and alpha may be involved in regulation of ATP synthase activity. The sequences of beta-subunits are highly conserved in Escherichia coli and bovine mitochondria. Also alpha and beta are weakly homologous to each other throughout most of their amino acid sequences, suggesting that they have common functions in catalysis. Related sequences in both alpha and beta and in other enzymes that bind ATP or ADP in catalysis, notably myosin, phosphofructokinase, and adenylate kinase, help to identify regions contributing to an adenine nucleotide binding fold in both ATP synthase subunits.
5,191 citations