scispace - formally typeset
Search or ask a question
Author

Mattias Kuldkepp

Bio: Mattias Kuldkepp is an academic researcher from Royal Institute of Technology. The author has contributed to research in topics: Reversed field pinch & Pinch. The author has an hindex of 6, co-authored 15 publications receiving 153 citations. Previous affiliations of Mattias Kuldkepp include European Atomic Energy Community.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors characterized the growth of non-resonant m = 1 unstable resistive wall modes (RWMs) in a thin shell reversed field pinch (RFP) device EXTRAP T2R without active feedback control.
Abstract: Discharges in the thin shell reversed field pinch (RFP) device EXTRAP T2R without active feedback control are characterized by growth of non-resonant m = 1 unstable resistive wall modes (RWMs) in a ...

41 citations

Journal ArticleDOI
TL;DR: In this paper, a two-dimensional array of saddle coils at Mc poloidal and Nc toroidal positions is used on the EXTRAP T2R reversed-field pinch to study active control of resistive wall modes (RWMs).
Abstract: A two-dimensional array of saddle coils at Mc poloidal and Nc toroidal positions is used on the EXTRAP T2R reversed-field pinch (Brunsell P R et al 2001 Plasma Phys. Control. Fusion 43 1457) to study active control of resistive wall modes (RWMs). Spontaneous growth of several RWMs with poloidal mode number m = 1 and different toroidal mode number n is observed experimentally, in agreement with linear MHD modelling. The measured plasma response to a controlled coil field and the plasma response computed using the linear circular cylinder MHD model are in quantitive agreement. Feedback control introduces a linear coupling of modes with toroidal mode numbers n, n' that fulfil the condition |n − n'| = Nc. Pairs of coupled unstable RWMs are present in feedback experiments with an array of Mc × Nc = 4 × 16 coils. Using intelligent shell feedback, the coupled modes are generally not controlled even though the field is suppressed at the active coils. A better suppression of coupled modes may be achieved in the case of rotating modes by using the mode control feedback scheme with individually set complex gains. In feedback with a larger array of Mc × Nc = 4 × 32 coils, the coupling effect largely disappears, and with this array, the main internal RWMs n = −11, −10, +5, +6 are all simultaneously suppressed throughout the discharge (7–8 wall times). With feedback there is a two-fold extension of the pulse length, compared to discharges without feedback.

32 citations

Journal ArticleDOI
TL;DR: In this paper, an overview of the active beam spectroscopy diagnostics for the ITER was presented, where the authors showed that the mirror based periscopes and the impurity coating of the first mirror affect the signal strength and the polarization characteristics of the measured spectra having an impact in the measurement accuracy.
Abstract: An overview is given of the present design of the active beam spectroscopy diagnostics for the ITER. Present spatial resolution and signal-to-noise indicate that, in principle, all proposed measurements are possible covering the entire plasma minor radius. Calculations show that the mirror based periscopes and the impurity coating of the first mirror affect the signal strength and the polarization characteristics of the measured spectra having an impact in the measurement accuracy. On-line calibration techniques and methods to access the first mirror status are addressed.

24 citations

Journal ArticleDOI
TL;DR: The effect of single and multiple mirrors in polarization measurements in two and three dimensions is discussed, and experimental results show how symmetrical placement of mirrors in three-dimensional geometry can eliminate changes in the polarization.
Abstract: Measurements of the polarization effects in multimirror experiments by using a dual photoelastic modulator are described. The effect of single and multiple mirrors in polarization measurements in two and three dimensions is discussed, and experimental results show how symmetrical placement of mirrors in three-dimensional geometry can eliminate changes in the polarization. Calibration procedures for a dual photoelastic modulator and potential error sources such as misalignment of analyzer, signal dc offset, and neglect of aperture size are presented. Mirror-surface evolution and how it can disturb the polarization measurement are also addressed.

17 citations

Journal ArticleDOI
TL;DR: In this paper, an analysis of the toroidal rotation velocities of the T2R reversed field pinch and the internal resonant tearing modes (TMs) and the intrinsic impurity oxygen ions is presented.
Abstract: Active feedback stabilization of multiple resistive wall modes (RWMs) has been successfully proven in the EXTRAP T2R reversed field pinch. One of the features of plasma discharges operated with active feedback stabilization, in addition to the prolongation of the plasma discharge, is the sustainment of the plasma rotation. Sustained rotation is observed both for the internally resonant tearing modes (TMs) and the intrinsic impurity oxygen ions. Good quantitative agreement between the toroidal rotation velocities of both is found: the toroidal rotation is characterized by an acceleration phase followed, after one wall time, by a deceleration phase that is slower than in standard discharges. The TMs and the impurity ions rotate in the same poloidal direction with also similar velocities. Poloidal and toroidal velocities have comparable amplitudes and a simple model of their radial profile reproduces the main features of the helical angular phase velocity. RWMs feedback does not qualitatively change the TMs behaviour and typical phenomena such as the dynamo and the 'slinky' are still observed. The improved sustainment of the plasma and TMs rotation occurs also when feedback only acts on internally non-resonant RWMs. This may be due to an indirect positive effect, through non-linear coupling between TMs and RWMs, of feedback on the TMs or to a reduced plasma-wall interaction affecting the plasma flow rotation. Electromagnetic torque calculations show that with active feedback stabilization the TMs amplitude remains well below the locking threshold condition for a thick shell. Finally, it is suggested that active feedback stabilization of RWMs and current profile control techniques can be employed simultaneously thus improving both the plasma duration and its confinement properties.

15 citations


Cited by
More filters
Journal Article
E.W. Herold1

331 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the requirements for high reliability in the systems (diagnostics) that provide the measurements in the ITER environment, which is similar to those made on the present-day large tokamaks while the specification of the measurements will be more stringent.
Abstract: In order to support the operation of ITER and the planned experimental programme an extensive set of plasma and first wall measurements will be required. The number and type of required measurements will be similar to those made on the present-day large tokamaks while the specification of the measurements—time and spatial resolutions, etc—will in some cases be more stringent. Many of the measurements will be used in the real time control of the plasma driving a requirement for very high reliability in the systems (diagnostics) that provide the measurements. The implementation of diagnostic systems on ITER is a substantial challenge. Because of the harsh environment (high levels of neutron and gamma fluxes, neutron heating, particle bombardment) diagnostic system selection and design has to cope with a range of phenomena not previously encountered in diagnostic design. Extensive design and R&D is needed to prepare the systems. In some cases the environmental difficulties are so severe that new diagnostic techniques are required. a Author to whom any correspondence should be addressed.

309 citations

Proceedings Article
01 Dec 1988
TL;DR: The Madison Symmetric Torus (MST) as mentioned in this paper is the largest reversed field pinch currently in operation, and it incorporates a number of design features that set it apart from other pinches, including the use of the conducting shell as both a vacuum vessel and single-turn toroidal field coil.
Abstract: AbstractThe Madison Symmetric Torus (MST) is the newest and largest reversed-field pinch (RFP) currently in operation. It incorporates a number of design features that set it apart from other pinches, including the use of the conducting shell as both a vacuum vessel and single-turn toroidal field coil. Specially insulated voltage gaps are exposed to the plasma. Magnetic field errors at these gaps as well as at the various diagnostic and pumping ports are minimized through a variety of techniques. The physics goals of MST include study of the effect of large plasma size on confinement and the detailed investigation of RFP turbulence, dynamo, and transport. Details of the design and initial operation of the device are presented.

280 citations

Journal ArticleDOI
TL;DR: In this article, the conceptual foundations and experimental results on the stabilization of the external kink and the resistive wall mode are reviewed, as well as the experimental results that can also be used to improve the general performance of fusion confinement devices.
Abstract: The pursuit of steady-state economic production of thermonuclear fusion energy has led to research on the stabilization of the external kink and the resistive wall mode. Advances in both experiment and theory, together with improvements in diagnostics, heating and feedback methods have led to substantial and steady progress in the understanding and stabilization of these instabilities. Many of the theory and experimental techniques and results that have been developed are useful not only for the stabilization of the resistive wall mode. They can also be used to improve the general performance of fusion confinement devices. The conceptual foundations and experimental results on the stabilization of the external kink and the resistive wall mode are reviewed.

178 citations