scispace - formally typeset
Search or ask a question
Author

Mauricio Rosas-Ballina

Other affiliations: University of Basel
Bio: Mauricio Rosas-Ballina is an academic researcher from The Feinstein Institute for Medical Research. The author has contributed to research in topics: Cholinergic & Inflammatory reflex. The author has an hindex of 27, co-authored 41 publications receiving 6632 citations. Previous affiliations of Mauricio Rosas-Ballina include University of Basel.

Papers
More filters
Journal ArticleDOI
07 Oct 2011-Science
TL;DR: This work has identified an acetylcholine-producing, memory phenotype T cell population in mice that is integral to the inflammatory reflex, and action potentials originating in the vagus nerve regulate T cells, which in turn produce the neurotransmitters required to control innate immune responses.
Abstract: Neural circuits regulate cytokine production to prevent potentially damaging inflammation. A prototypical vagus nerve circuit, the inflammatory reflex, inhibits tumor necrosis factor–α production in spleen by a mechanism requiring acetylcholine signaling through the α7 nicotinic acetylcholine receptor expressed on cytokine-producing macrophages. Nerve fibers in spleen lack the enzymatic machinery necessary for acetylcholine production; therefore, how does this neural circuit terminate in cholinergic signaling? We identified an acetylcholine-producing, memory phenotype T cell population in mice that is integral to the inflammatory reflex. These acetylcholine-producing T cells are required for inhibition of cytokine production by vagus nerve stimulation. Thus, action potentials originating in the vagus nerve regulate T cells, which in turn produce the neurotransmitter, acetylcholine, required to control innate immune responses.

1,137 citations

Journal ArticleDOI
TL;DR: It is shown that Toll-like receptor 4 (TLR4), a pivotal receptor for activation of innate immunity and cytokine release, is required for HMGB1-dependent activation of macrophage TNF release.
Abstract: During infection, vertebrates develop “sickness syndrome,” characterized by fever, anorexia, behavioral withdrawal, acute-phase protein responses, and inflammation. These pathophysiological responses are mediated by cytokines, including TNF and IL-1, released during the innate immune response to invasion. Even in the absence of infection, qualitatively similar physiological syndromes occur following sterile injury, ischemia reperfusion, crush injury, and autoimmune-mediated tissue damage. Recent advances implicate high-mobility group box 1 (HMGB1), a nuclear protein with inflammatory cytokine activities, in stimulating cytokine release. HMGB1 is passively released during cell injury and necrosis, or actively secreted during immune cell activation, positioning it at the intersection of sterile and infection-associated inflammation. To date, eight candidate receptors have been implicated in mediating the biological responses to HMGB1, but the mechanism of HMGB1-dependent cytokine release is unknown. Here we show that Toll-like receptor 4 (TLR4), a pivotal receptor for activation of innate immunity and cytokine release, is required for HMGB1-dependent activation of macrophage TNF release. Surface plasmon resonance studies indicate that HMGB1 binds specifically to TLR4, and that this binding requires a cysteine in position 106. A wholly synthetic 20-mer peptide containing cysteine 106 from within the cytokine-stimulating B box mediates TLR4-dependent activation of macrophage TNF release. Inhibition of TLR4 binding with neutralizing anti-HMGB1 mAb or by mutating cysteine 106 prevents HMGB1 activation of cytokine release. These results have implications for rationale, design, and development of experimental therapeutics for use in sterile and infectious inflammation.

727 citations

Journal ArticleDOI
TL;DR: It is shown that vagus nerve stimulation during endotoxemia specifically attenuates TNF production by spleen macrophages in the red pulp and the marginal zone, and the cholinergic antiinflammatory pathway regulates TNFProduction in discrete macrophage populations via two serially connected neurons.
Abstract: The autonomic nervous system maintains homeostasis through its sympathetic and parasympathetic divisions. During infection, cells of the immune system release cytokines and other mediators that cause fever, hypotension, and tissue injury. Although the effect of cytokines on the nervous system has been known for decades, only recently has it become evident that the autonomic nervous system, in turn, regulates cytokine production through neural pathways. We have previously shown that efferent vagus nerve signals regulate cytokine production through the nicotinic acetylcholine receptor subunit α7, a mechanism termed “the cholinergic antiinflammatory pathway.” Here, we show that vagus nerve stimulation during endotoxemia specifically attenuates TNF production by spleen macrophages in the red pulp and the marginal zone. Administration of nicotine, a pharmacological agonist of α7, attenuated TNF immunoreactivity in these specific macrophage subpopulations. Synaptophysin-positive nerve endings were observed in close apposition to red pulp macrophages, but they do not express choline acetyltransferase or vesicular acetylcholine transporter. Surgical ablation of the splenic nerve and catecholamine depletion by reserpine indicate that these nerves are catecholaminergic and are required for functional inhibition of TNF production by vagus nerve stimulation. Thus, the cholinergic antiinflammatory pathway regulates TNF production in discrete macrophage populations via two serially connected neurons: one preganglionic, originating in the dorsal motor nucleus of the vagus nerve, and the second postganglionic, originating in the celiac-superior mesenteric plexus, and projecting in the splenic nerve.

605 citations

Journal ArticleDOI
TL;DR: It is shown that vagus nerve stimulation fails to inhibit tumor necrosis factor (TNF) production in splenectomized animals during lethal endotoxemia, revealing a specific, physiological connection between the nervous and innate immune systems that may be exploited through either electrical vagu nerve stimulation or administration of α7 agonists to inhibit proinflammatory cytokine production during infection and tissue injury.
Abstract: The innate immune system protects against infection and tissue injury through the specialized organs of the reticuloendothelial system, including the lungs, liver, and spleen. The central nervous system regulates innate immune responses via the vagus nerve, a mechanism termed the cholinergic antiinflammatory pathway. Vagus nerve stimulation inhibits proinflammatory cytokine production by signaling through the α7 nicotinic acetylcholine receptor subunit. Previously, the functional relationship between the cholinergic antiinflammatory pathway and the reticuloendothelial system was unknown. Here we show that vagus nerve stimulation fails to inhibit tumor necrosis factor (TNF) production in splenectomized animals during lethal endotoxemia. Selective lesioning of the common celiac nerve abolishes TNF suppression by vagus nerve stimulation, suggesting that the cholinergic pathway is functionally hard wired to the spleen via this branch of the vagus nerve. Administration of nicotine, an α7 agonist that mimics vagus nerve stimulation, increases proinflammatory cytokine production and lethality from polymicrobial sepsis in splenectomized mice, indicating that the spleen is critical to the protective response of the cholinergic pathway. These results reveal a specific, physiological connection between the nervous and innate immune systems that may be exploited through either electrical vagus nerve stimulation or administration of α7 agonists to inhibit proinflammatory cytokine production during infection and tissue injury.

595 citations

Journal ArticleDOI
TL;DR: In this article, the authors summarize autonomic regulation of local and systemic inflammation through the "cholinergic anti-inflammatory pathway", a mechanism consisting of the vagus nerve and its major neurotransmitter, acetylcholine, a process dependent on the nicotinic acetyl choline receptor alpha7 subunit.
Abstract: Cytokine production is necessary to protect against pathogens and promote tissue repair, but excessive cytokine release can lead to systemic inflammation, organ failure and death Inflammatory responses are finely regulated to effectively guard from noxious stimuli The central nervous system interacts dynamically with the immune system to modulate inflammation through humoral and neural pathways The effect of glucocorticoids and other humoral mediators on inflammatory responses has been studied extensively in the past decades In contrast, neural control of inflammation has only been recently described We summarize autonomic regulation of local and systemic inflammation through the 'cholinergic anti-inflammatory pathway', a mechanism consisting of the vagus nerve and its major neurotransmitter, acetylcholine, a process dependent on the nicotinic acetylcholine receptor alpha7 subunit We recapitulate additional sources of acetylcholine and their contribution to the inflammatory response, as well as acetylcholine regulation by acetylcholinesterase as a means to attenuate inflammation We discuss potential therapeutic applications to treat diseases characterized by acute or chronic inflammation, including autoimmune diseases, and propose future research directions

483 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A review of the basis, diagnosis, and current treatment of Sepsis in patients with this disorder is examined.
Abstract: Morbidity and mortality from sepsis remains unacceptably high. Large variability in clinical practice, plus the increasing awareness that certain processes of care associated with improved critical...

2,927 citations

01 Jan 2010
TL;DR: In this paper, the authors describe a scenario where a group of people are attempting to find a solution to the problem of "finding the needle in a haystack" in the environment.
Abstract: 中枢神経系疾患の治療は正常細胞(ニューロン)の機能維持を目的とするが,脳血管障害のように機能障害の原因が細胞の死滅に基づくことは多い.一方,脳腫瘍の治療においては薬物療法や放射線療法といった腫瘍細胞の死滅を目標とするものが大きな位置を占める.いずれの場合にも,細胞死の機序を理解することは各種病態や治療法の理解のうえで重要である.現在のところ最も研究の進んでいる細胞死の型はアポトーシスである.そのなかで重要な位置を占めるミトコンドリアにおける反応および抗アポトーシス因子について概要を紹介する.

2,716 citations

Journal ArticleDOI
TL;DR: The term “alarmin” is proposed to categorize such endogenous molecules that signal tissue and cell damage, and can be considered subgroups of a larger set, the damage‐associated molecular patterns (DAMPs).
Abstract: Multicellular animals detect pathogens via a set of receptors that recognize pathogen-associated molecular patterns (PAMPs). However, pathogens are not the only causative agents of tissue and cell damage: trauma is another one. Evidence is accumulating that trauma and its associated tissue damage are recognized at the cell level via receptor-mediated detection of intracellular proteins released by the dead cells. The term "alarmin" is proposed to categorize such endogenous molecules that signal tissue and cell damage. Intriguingly, effector cells of innate and adaptive immunity can secrete alarmins via nonclassical pathways and often do so when they are activated by PAMPs or other alarmins. Endogenous alarmins and exogenous PAMPs therefore convey a similar message and elicit similar responses; they can be considered subgroups of a larger set, the damage-associated molecular patterns (DAMPs).

2,677 citations

Journal ArticleDOI
TL;DR: Current understanding of the mechanisms by which the innate and adaptive immune systems interact with neurotransmitters and neurocircuits to influence the risk for depression are detailed.
Abstract: Crosstalk between inflammatory pathways and neurocircuits in the brain can lead to behavioural responses, such as avoidance and alarm, that are likely to have provided early humans with an evolutionary advantage in their interactions with pathogens and predators. However, in modern times, such interactions between inflammation and the brain appear to drive the development of depression and may contribute to non-responsiveness to current antidepressant therapies. Recent data have elucidated the mechanisms by which the innate and adaptive immune systems interact with neurotransmitters and neurocircuits to influence the risk for depression. Here, we detail our current understanding of these pathways and discuss the therapeutic potential of targeting the immune system to treat depression.

2,133 citations

Journal ArticleDOI
TL;DR: This physiological, functional anatomical mechanism for neurological regulation of cytokine-dependent disease that begins to define an immunological homunculus is reviewed.
Abstract: Cytokine production by the immune system contributes importantly to both health and disease. The nervous system, via an inflammatory reflex of the vagus nerve, can inhibit cytokine release and thereby prevent tissue injury and death. The efferent neural signaling pathway is termed the cholinergic antiinflammatory pathway. Cholinergic agonists inhibit cytokine synthesis and protect against cytokine-mediated diseases. Stimulation of the vagus nerve prevents the damaging effects of cytokine release in experimental sepsis, endotoxemia, ischemia/reperfusion injury, hemorrhagic shock, arthritis, and other inflammatory syndromes. Herein is a review of this physiological, functional anatomical mechanism for neurological regulation of cytokine-dependent disease that begins to define an immunological homunculus.

1,354 citations