scispace - formally typeset
Search or ask a question
Author

Maurizio Palesi

Other affiliations: Kore University of Enna
Bio: Maurizio Palesi is an academic researcher from University of Catania. The author has contributed to research in topics: Network on a chip & Energy consumption. The author has an hindex of 29, co-authored 157 publications receiving 3262 citations. Previous affiliations of Maurizio Palesi include Kore University of Enna.


Papers
More filters
Proceedings ArticleDOI
27 Jul 2015
TL;DR: Noxim, an open, configurable, extendible, cycle-accurate NoC simulator developed in SystemC which allows to analyze the performance and power figures of both conventional wired NoC and emerging WiNoC architectures.
Abstract: Emerging on-chip communication technologies like wireless Networks-on-Chip (WiNoCs) have been proposed as candidate solutions for addressing the scalability limitations of conventional multi-hop NoC architectures. In a WiNoC, a subset of network nodes are equipped with a wireless interface which allows them long-range communication in a single hop. This paper presents Noxim, an open, configurable, extendible, cycle-accurate NoC simulator developed in SystemC which allows to analyze the performance and power figures of both conventional wired NoC and emerging WiNoC architectures.

238 citations

Journal ArticleDOI
TL;DR: A novel selection strategy based on the concept of Neighbors-on-Path is presented that can be coupled with any adaptive routing algorithm to exploit the situations of indecision occurring when the routing function returns several admissible output channels.
Abstract: Efficient and deadlock-free routing is critical to the performance of networks-on-chip. The effectiveness of any adaptive routing algorithm strongly depends on the underlying selection strategy. A selection function is used to select the output channel where the packet will be forwarded on. In this paper we present a novel selection strategy that can be coupled with any adaptive routing algorithm. The proposed selection strategy is based on the concept of Neighbors-on-Path the aims of which is to exploit the situations of indecision occurring when the routing function returns several admissible output channels. The overall objective is to choose the channel that will allow the packet to be routed to its destination along a path that is as free as possible of congested nodes. Performance evaluation is carried out by using a flit-accurate simulator under traffic scenarios generated by both synthetic and real applications. Results obtained show how the proposed selection strategy applied to the Odd-Even routing algorithm yields an improvement in both average delay and saturation point up to 20% and 30% on average respectively, with a minimal overhead in terms of area occupation. In addition, a positive effect on total energy consumption is also observed under near-congestion packet injection rates.

226 citations

Proceedings ArticleDOI
08 Sep 2004
TL;DR: The approach is an efficient and accurate way to obtain the Pareto mappings that optimize performance and power consumption and integration in an exploration framework with an event-driven trace-based simulator makes it possible to take account of important dynamic effects that have a great impact on mapping.
Abstract: In this paper we present an approach to multi-objective exploration of the mapping space of a mesh-based network-on-chip architecture. Based on evolutionary computing techniques, the approach is an efficient and accurate way to obtain the Pareto mappings that optimize performance and power consumption. Integration of the approach in an exploration framework with a kernel based on an event-driven trace-based simulator makes it possible to take account of important dynamic effects that have a great impact on mapping. Validation on both synthesized traffic and real applications (an MPEG-2 encoder/decoder system) confirms the efficiency, accuracy and scalability of the approach.

210 citations

Proceedings ArticleDOI
06 May 2002
TL;DR: This work provides a technique for efficiently exploring a parameterized system-on-a-chip (SoC) architecture to find all Pareto-optimal configurations in a multi-objective design space and applies genetic algorithms (GAs) to discover Paringtonimal configurations within the remaining design points.
Abstract: In this work, we provide a technique for efficiently exploring a parameterized system-on-a-chip (SoC) architecture to find all Pareto-optimal configurations in a multi-objective design space. Globally, our approach uses a parameter dependency model of our target parameterized SoC architecture to extensively prune non-optimal sub-spaces. Locally, our approach applies Genetic Algorithms (GAs) to discover Pareto-optimal configurations within the remaining design points. The computed Pareto-optimal configurations will represent the range of performance (e.g., timing and power) tradeoffs that are obtainable by adjusting parameter values for a fixed application that is mapped on the parameterized SoC architecture. We have successfully applied our technique to explore Pareto-optimal configurations for a number of applications mapped on a parameterized SoC architecture.

197 citations

Journal ArticleDOI
TL;DR: Noxim is presented, an open, configurable, extendible, cycle-accurate NoC simulator developed in SystemC, which allows to analyze the performance and power figures of both conventional wired NoC and emerging WiNoC architectures.
Abstract: The on-chip communication in current Chip-MultiProcessors (CMP) and MultiProcessor-SoC (MPSoC) is mainly based on the Network-on-Chip (NoC) design paradigm. Unfortunately, it is foreseen that conventional NoC architectures cannot sustain the performance, power, and reliability requirements demanded by the next generation of manycore architectures. Recently, emerging on-chip communication technologies, like wireless Networks-on-Chip (WiNoCs), have been proposed as candidate solutions for addressing the scalability limitations of conventional multi-hop NoC architectures. In a WiNoC, a subset of network nodes are equipped with a wireless interface which allows them long-range communication in a single hop. Assessing the performance and power figures of NoC and WiNoC architectures requires the availability of simulation tools that are often limited on modeling specific network configurations. This article presents Noxim, an open, configurable, extendible, cycle-accurate NoC simulator developed in SystemC, which allows to analyze the performance and power figures of both conventional wired NoC and emerging WiNoC architectures.

188 citations


Cited by
More filters
Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

Journal ArticleDOI
TL;DR: This paper surveys the development ofMOEAs primarily during the last eight years and covers algorithmic frameworks such as decomposition-based MOEAs (MOEA/Ds), memetic MOEas, coevolutionary MOE As, selection and offspring reproduction operators, MOE as with specific search methods, MOeAs for multimodal problems, constraint handling and MOE
Abstract: A multiobjective optimization problem involves several conflicting objectives and has a set of Pareto optimal solutions. By evolving a population of solutions, multiobjective evolutionary algorithms (MOEAs) are able to approximate the Pareto optimal set in a single run. MOEAs have attracted a lot of research effort during the last 20 years, and they are still one of the hottest research areas in the field of evolutionary computation. This paper surveys the development of MOEAs primarily during the last eight years. It covers algorithmic frameworks such as decomposition-based MOEAs (MOEA/Ds), memetic MOEAs, coevolutionary MOEAs, selection and offspring reproduction operators, MOEAs with specific search methods, MOEAs for multimodal problems, constraint handling and MOEAs, computationally expensive multiobjective optimization problems (MOPs), dynamic MOPs, noisy MOPs, combinatorial and discrete MOPs, benchmark problems, performance indicators, and applications. In addition, some future research issues are also presented.

1,842 citations

Journal ArticleDOI
TL;DR: The intent is to rigorously define multiobjective optimization problems and certain related concepts, present an MOEA classification scheme, and evaluate the variety of contemporary MOEAs.
Abstract: Solving optimization problems with multiple (often conflicting) objectives is, generally, a very difficult goal. Evolutionary algorithms (EAs) were initially extended and applied during the mid-eighties in an attempt to stochastically solve problems of this generic class. During the past decade, a variety of multiobjective EA (MOEA) techniques have been proposed and applied to many scientific and engineering applications. Our discussion's intent is to rigorously define multiobjective optimization problems and certain related concepts, present an MOEA classification scheme, and evaluate the variety of contemporary MOEAs. Current MOEA theoretical developments are evaluated; specific topics addressed include fitness functions, Pareto ranking, niching, fitness sharing, mating restriction, and secondary populations. Since the development and application of MOEAs is a dynamic and rapidly growing activity, we focus on key analytical insights based upon critical MOEA evaluation of current research and applications. Recommended MOEA designs are presented, along with conclusions and recommendations for future work.

1,241 citations

Journal ArticleDOI
TL;DR: This paper provides a general description of NoC architectures and applications and enumerates several related research problems organized under five main categories: Application characterization, communication paradigm, communication infrastructure, analysis, and solution evaluation.
Abstract: To alleviate the complex communication problems that arise as the number of on-chip components increases, network-on-chip (NoC) architectures have been recently proposed to replace global interconnects. In this paper, we first provide a general description of NoC architectures and applications. Then, we enumerate several related research problems organized under five main categories: Application characterization, communication paradigm, communication infrastructure, analysis, and solution evaluation. Motivation, problem description, proposed approaches, and open issues are discussed for each problem from system, microarchitecture, and circuit perspectives. Finally, we address the interactions among these research problems and put the NoC design process into perspective.

733 citations