scispace - formally typeset
Search or ask a question
Author

Maury Cole

Bio: Maury Cole is an academic researcher from Scripps Research Institute. The author has contributed to research in topics: Inhalation & Nicotine. The author has an hindex of 25, co-authored 40 publications receiving 2614 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors found that increased intracranial self-stimulation (ICSS) reward thresholds also accompany abstinence from chronic ethanol exposure sufficient to induce physical dependence.
Abstract: Abstinence from chronic administration of various drugs of abuse such as ethanol, opiates, and psychostimulants results in withdrawal syndromes largely unique to each drug class. However, one symptom that appears common to these withdrawal syndromes in humans is a negative affective/motivational state. Prior work in rodents has shown that elevations in intracranial self-stimulation (ICSS) reward thresholds provide a quantitative index that serves as a model for the negative affective state during withdrawal from psychostimulants and opiates. The current study sought to determine whether ICSS threshold elevations also accompany abstinence from chronic ethanol exposure sufficient to induce physical dependence. Rats prepared with stimulating electrodes in the lateral hypothalamus were trained in a discrete-trial current-intensity ICSS threshold procedure; subsequently they were subjected to chronic ethanol administration in ethanol vapor chambers (average blood alcohol level of 197 mg/dl). A time-dependent elevation in ICSS thresholds was observed following removal from the ethanol, but not the control, chambers. Thresholds were significantly elevated for 48 hr after cessation of ethanol exposure, with peak elevations observed at 6-8 hr. Blood alcohol levels were directly correlated with the magnitude of peak threshold elevation. Ratings of traditional overt signs of withdrawal showed a similar time course of expression and resolution. The results suggest that decreased function of reward systems (elevations in reward thresholds) is a common element of withdrawal from chronic administration of several diverse classes of abused drugs.

339 citations

Journal ArticleDOI
TL;DR: Results indicate that operant responding for ethanol was enhanced during protracted abstinence by 30–100% and remained elevated for 4–8 weeks post acute withdrawal, which has important implications for understanding the characteristics and mechanisms underlying vulnerability to relapse.

339 citations

Journal ArticleDOI
TL;DR: The data suggest that the reinforcing effects of EtOH and neurotransmitter pathways mediating reward are altered after the development of dependence, and they support the use of this paradigm for further investigations into the neuropharmacological mechanisms mediating reinforcement in dependent versus nondependent animals.
Abstract: Dependence is an important factor motivating continued alcohol use in human alcoholics. Development of a model of ethanol (EtOH) consumption in dependent animals would advance the understanding of reinforcement after chronic EtOH exposure and allow for the investigation of the neuropharmacological mechanisms mediating reinforcement in dependent versus nondependent animals. In the present study, rats were trained to lever press for 10% EtOH, surgically implanted with bilateral guide cannulae in the amygdala, and either made dependent on EtOH by exposure for 2 weeks to EtOH or exposed to air in identical vapor chambers. Upon removal, the rats were placed in operant boxes and allowed to respond on levers for 10% EtOH or water during a 12-hr period. Rats were removed briefly at approximately 6.5 hr for intra-amygdala injections of saline or the GABAA receptor agonist muscimol. After the test period, rats were returned to the vapor chambers for 4 days before retest. EtOH-dependent animals responded more for EtOH across the 12-hr test period than did air control nondependent rats; this difference became more pronounced with repeated test sessions. Intra-amygdala muscimol significantly decreased responding for EtOH in EtOH-dependent rats, but had no effect in nondependent controls. These data suggest that the reinforcing effects of EtOH and neurotransmitter pathways mediating reward are altered after the development of dependence, and they support the use of this paradigm for further investigations into the neuropharmacology of EtOH dependence.

326 citations

Journal ArticleDOI
TL;DR: Initial pharmacological studies suggest that manipulation of the CRF system in the CeA can block this increased alcohol intake, and additional behavioral validation and initial pharmacological validation of this withdrawal-associated drinking procedure are provided.
Abstract: Background: Studies in rodents have determined that intermittent exposure to alcohol vapor can increase subsequent ethanol self-administration, measured with operant and 2-bottle choice procedures. Two key procedural factors in demonstrating increased alcohol intake are the establishment of stable alcohol self-administration before alcohol vapor exposure and the number of bouts of intermittent vapor exposure. The present studies provide additional behavioral validation and initial pharmacological validation of this withdrawal-associated drinking procedure. Methods: Studies at 2 different sites (Portland and Scripps) examined the effect of intermittent ethanol vapor exposure (3 cycles of 16 hours of ethanol vapor+8 hours air) on 2-hour limited access ethanol preference drinking in male C57BL/6 mice. Separate studies tested 10 or 15% (v/v) ethanol concentrations, and measured intake during the circadian dark. In one study, before measuring ethanol intake after the second bout of intermittent vapor exposure, mice were tested for handling-induced convulsions (HICs) indicative of physical dependence on ethanol. In a second study, the effect of bilateral infusions of the corticotropin-releasing factor (CRF) receptor antagonist d-Phe-CRF(12–41) (0.25 μg/0.5 μL) into the central nucleus of the amygdala (CeA) on ethanol intake was compared in vapor-exposed animals and air controls. Results: Intermittent ethanol vapor exposure significantly increased ethanol intake by 30 to 40%, and the mice had higher blood ethanol concentrations than controls. Intra-amygdala infusions of d-Phe-CRF(12–41) significantly decreased the withdrawal-associated increase in ethanol intake without altering ethanol consumption in controls. Following the second bout of intermittent vapor exposure, mice exhibited an increase in HICs, when compared with their own baseline scores or the air controls. Conclusions: Intermittent alcohol vapor exposure significantly increased alcohol intake and produced signs of physical dependence. Initial pharmacological studies suggest that manipulation of the CRF system in the CeA can block this increased alcohol intake.

198 citations

Journal ArticleDOI
TL;DR: These studies, using both a pharmacological and genetic approach, support a critical role for the CRF(1) system in ethanol self-administration following dependence, and a model is presented that may be useful for studies examining underlying mechanisms of the ethanol addiction process as well as for testing potential therapeutics.
Abstract: Models of dependence-induced increases in ethanol self-administration will be critical in increasing our understanding of the processes of addiction and relapse, underlying mechanisms, and potential therapeutics. One system that has received considerable attention recently is the CRF1 system that may mediate the link between anxiety states and relapse drinking. C57BL/6J mice were trained to lever press for ethanol, were made dependent and then were allowed to self-administer ethanol following a period of abstinence. The effect of the CRF1 antagonist, antalarmin, was examined on this abstinence-induced self-administration in a separate group of mice. Finally, dependence-induced changes in ethanol self-administration were examined in CRF1 knockout and wild type mice. The results indicated that ethanol self-administration was increased following the induction of dependence, but only after a period of abstinence. This increase in ethanol self-administration was blocked by antalarmin. Furthermore, CRF1 knockout mice did not display this increased ethanol self-administration following dependence and abstinence. These studies, using both a pharmacological and genetic approach, support a critical role for the CRF1 system in ethanol self-administration following dependence. In addition, a model is presented that may be useful for studies examining underlying mechanisms of the ethanol addiction process as well as for testing potential therapeutics.

152 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The delineation of the neurocircuitry of the evolving stages of the addiction syndrome forms a heuristic basis for the search for the molecular, genetic, and neuropharmacological neuroadaptations that are key to vulnerability for developing and maintaining addiction.

4,160 citations

Journal ArticleDOI
TL;DR: The view that addiction is the pathology that results from an allostatic mechanism using the circuits established for natural rewards provides a realistic approach to identifying the neurobiological factors that produce vulnerability to addiction and relapse.

2,678 citations

Journal ArticleDOI
03 Oct 1997-Science
TL;DR: This framework provides a realistic approach to identifying the neurobiological factors that produce vulnerability to addiction and to relapse in individuals with a history of addiction.
Abstract: Understanding the neurobiological mechanisms of addiction requires an integration of basic neuroscience with social psychology, experimental psychology, and psychiatry. Addiction is presented as a cycle of spiralling dysregulation of brain reward systems that progressively increases, resulting in compulsive drug use and a loss of control over drug-taking. Sensitization and counteradaptation are hypothesized to contribute to this hedonic homeostatic dysregulation, and the neurobiological mechanisms involved, such as the mesolimbic dopamine system, opioid peptidergic systems, and brain and hormonal stress systems, are beginning to be characterized. This framework provides a realistic approach to identifying the neurobiological factors that produce vulnerability to addiction and to relapse in individuals with a history of addiction.

2,391 citations

Journal ArticleDOI
11 Feb 2000-Science
TL;DR: It is reported that ethanol, acting by a dual mechanism [blockade of N-methyl-D-aspartate (NMDA) glutamate receptors and excessive activation of GABA(A) receptors], triggers widespread apoptotic neurodegeneration in the developing rat forebrain.
Abstract: The deleterious effects of ethanol on the developing human brain are poorly understood. Here it is reported that ethanol, acting by a dual mechanism [blockade of N-methyl-D-aspartate (NMDA) glutamate receptors and excessive activation of GABA(A) receptors], triggers widespread apoptotic neurodegeneration in the developing rat forebrain. Vulnerability coincides with the period of synaptogenesis, which in humans extends from the sixth month of gestation to several years after birth. During this period, transient ethanol exposure can delete millions of neurons from the developing brain. This can explain the reduced brain mass and neurobehavioral disturbances associated with human fetal alcohol syndrome.

1,339 citations

Journal ArticleDOI
TL;DR: A neurobiological model of the brain emotional systems has been proposed to explain the persistent changes in motivation that are associated with vulnerability to relapse in addiction, and this model may generalize to other psychopathology associated with dysregulated motivational systems.
Abstract: A neurobiological model of the brain emotional systems has been proposed to explain the persistent changes in motivation that are associated with vulnerability to relapse in addiction, and this model may generalize to other psychopathology associated with dysregulated motivational systems. In this framework, addiction is conceptualized as a cycle of decreased function of brain reward systems and recruitment of antireward systems that progressively worsen, resulting in the compulsive use of drugs. Counteradaptive processes, such as opponent process, that are part of the normal homeostatic limitation of reward function fail to return within the normal homeostatic range and are hypothesized to repeatedly drive the allostatic state. Excessive drug taking thus results in not only the short-term amelioration of the reward deficit but also suppression of the antireward system. However, in the long term, there is worsening of the underlying neurochemical dysregulations that ultimately form an allostatic state (de...

1,186 citations