scispace - formally typeset
Search or ask a question
Author

Max Born

Bio: Max Born is an academic researcher from University of Göttingen. The author has contributed to research in topics: Diffraction & Einstein. The author has an hindex of 62, co-authored 318 publications receiving 76653 citations. Previous affiliations of Max Born include Institut Français & University of Edinburgh.


Papers
More filters
Book
01 Jan 1959
TL;DR: In this paper, the authors discuss various topics about optics, such as geometrical theories, image forming instruments, and optics of metals and crystals, including interference, interferometers, and diffraction.
Abstract: The book is comprised of 15 chapters that discuss various topics about optics, such as geometrical theories, image forming instruments, and optics of metals and crystals. The text covers the elements of the theories of interference, interferometers, and diffraction. The book tackles several behaviors of light, including its diffraction when exposed to ultrasonic waves.

19,815 citations

01 Oct 1999
TL;DR: In this article, the authors discuss various topics about optics, such as geometrical theories, image forming instruments, and optics of metals and crystals, including interference, interferometers, and diffraction.
Abstract: The book is comprised of 15 chapters that discuss various topics about optics, such as geometrical theories, image forming instruments, and optics of metals and crystals. The text covers the elements of the theories of interference, interferometers, and diffraction. The book tackles several behaviors of light, including its diffraction when exposed to ultrasonic waves.

19,503 citations

Book
01 Jan 1954
TL;DR: Born and Huang's classic work on the dynamics of crystal lattices was published over thirty years ago, and it remains the definitive treatment of the subject as mentioned in this paper. But it is not the most complete work on crystal lattice dynamics.
Abstract: Although Born and Huang's classic work on the dynamics of crystal lattices was published over thirty years ago, the book remains the definitive treatment of the subject. It begins with a brief introduction to atomic forces, lattice vibrations and elasticity, and then breaks off into four sections. The first section deals with the general statistical mechanics of ideal lattices, leading to the electric polarizability and to the scattering of light. The second section deals with the properties of long lattice waves, the third with thermal properties, and the fourth with optical properties.

7,756 citations

Journal ArticleDOI
TL;DR: The theory of interference and interferometers has been studied extensively in the field of geometrical optics, see as discussed by the authors for a survey of the basic properties of the electromagnetic field.
Abstract: Historical introduction 1. Basic properties of the electromagnetic field 2. Electromagnetic potentials and polarization 3. Foundations of geometrical optics 4. Geometrical theory of optical imaging 5. Geometrical theory of aberrations 6. Image-forming instruments 7. Elements of the theory of interference and interferometers 8. Elements of the theory of diffraction 9. The diffraction theory of aberrations 10. Interference and diffraction with partially coherent light 11. Rigorous diffraction theory 12. Diffraction of light by ultrasonic waves 13. Scattering from inhomogeneous media 14. Optics of metals 15. Optics of crystals 16. Appendices Author index Subject index.

4,439 citations

Journal ArticleDOI
TL;DR: In der Anwendung der Quantentheorie auf die Molekeln kann man folgende Entwicklungsstufen unterscheiden: Das erste Stadium1) ersetzt die zweiatomige Molekel durch das Hantelmodell, das als einfacher „Rotator“ behandelt wird as discussed by the authors.
Abstract: In der Anwendung der Quantentheorie auf die Molekeln kann man folgende Entwicklungsstufen unterscheiden: Das erste Stadium1) ersetzt die zweiatomige Molekel durch das Hantelmodell, das als einfacher „Rotator“ behandelt wird. Mehratomige Molekeln werden in entsprechender Weise als starre „Kreisel“ angesehen.2) Dieser Standpunkt erlaubt es, die einfachsten Gesetze der Bandenspektren und der spezifischen Warme mehratomiger Gase zu erklaren. Das nachste Stadium1) last die Annahme starrer Verbindungen zwischen den Atomen fallen und berucksichtigt die Kernschwingungen, zunachst als harmonische Schwingungen; dabie ergenben sich nach Sponer3) und Kratzer4) Zusammenhange zwischen den einzelnen Banden eines Bandensystems.

4,131 citations


Cited by
More filters
Book
01 Jan 1936

8,152 citations

Journal ArticleDOI
23 Jun 2006-Science
TL;DR: This work shows how electromagnetic fields can be redirected at will and proposes a design strategy that has relevance to exotic lens design and to the cloaking of objects from electromagnetic fields.
Abstract: Using the freedom of design that metamaterials provide, we show how electromagnetic fields can be redirected at will and propose a design strategy. The conserved fields-electric displacement field D, magnetic induction field B, and Poynting vector B-are all displaced in a consistent manner. A simple illustration is given of the cloaking of a proscribed volume of space to exclude completely all electromagnetic fields. Our work has relevance to exotic lens design and to the cloaking of objects from electromagnetic fields.

7,811 citations

Journal ArticleDOI
12 Feb 1998-Nature
TL;DR: In this article, the optical properties of submicrometre cylindrical cavities in metallic films were explored and it was shown that arrays of such holes display highly unusual zero-order transmission spectra at wavelengths larger than the array period, beyond which no diffraction occurs.
Abstract: The desire to use and control photons in a manner analogous to the control of electrons in solids has inspired great interest in such topics as the localization of light, microcavity quantum electrodynamics and near-field optics1,2,3,4,5,6. A fundamental constraint in manipulating light is the extremely low transmittivity of apertures smaller than the wavelength of the incident photon. While exploring the optical properties of submicrometre cylindrical cavities in metallic films, we have found that arrays of such holes display highly unusual zero-order transmission spectra (where the incident and detected light are collinear) at wavelengths larger than the array period, beyond which no diffraction occurs. In particular, sharp peaks in transmission are observed at wavelengths as large as ten times the diameter of the cylinders. At these maxima the transmission efficiency can exceed unity (when normalized to the area of the holes), which is orders of magnitude greater than predicted by standard aperture theory. Our experiments provide evidence that these unusual optical properties are due to the coupling of light with plasmons — electronic excitations — on the surface of the periodically patterned metal film. Measurements of transmission as a function of the incident light angle result in a photonic band diagram. These findings may find application in novel photonic devices.

7,316 citations

Journal ArticleDOI
TL;DR: In this paper, the current status of lattice-dynamical calculations in crystals, using density-functional perturbation theory, with emphasis on the plane-wave pseudopotential method, is reviewed.
Abstract: This article reviews the current status of lattice-dynamical calculations in crystals, using density-functional perturbation theory, with emphasis on the plane-wave pseudopotential method. Several specialized topics are treated, including the implementation for metals, the calculation of the response to macroscopic electric fields and their relevance to long-wavelength vibrations in polar materials, the response to strain deformations, and higher-order responses. The success of this methodology is demonstrated with a number of applications existing in the literature.

6,917 citations

Journal ArticleDOI
TL;DR: In this article, the authors focus on the origin of the D and G peaks and the second order of D peak and show that the G and 2 D Raman peaks change in shape, position and relative intensity with number of graphene layers.
Abstract: We review recent work on Raman spectroscopy of graphite and graphene. We focus on the origin of the D and G peaks and the second order of the D peak. The G and 2 D Raman peaks change in shape, position and relative intensity with number of graphene layers. This reflects the evolution of the electronic structure and electron–phonon interactions. We then consider the effects of doping on the Raman spectra of graphene. The Fermi energy is tuned by applying a gate-voltage. We show that this induces a stiffening of the Raman G peak for both holes and electrons doping. Thus Raman spectroscopy can be efficiently used to monitor number of layers, quality of layers, doping level and confinement.

6,496 citations