scispace - formally typeset
Search or ask a question
Author

Max Kleiber

Bio: Max Kleiber is an academic researcher. The author has an hindex of 1, co-authored 1 publications receiving 1445 citations.

Papers
More filters
Journal ArticleDOI

1,561 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Mammalian skeletal muscle comprises different fiber types, whose identity is first established during embryonic development by intrinsic myogenic control mechanisms and is later modulated by neural and hormonal factors.
Abstract: Mammalian skeletal muscle comprises different fiber types, whose identity is first established during embryonic development by intrinsic myogenic control mechanisms and is later modulated by neural and hormonal factors. The relative proportion of the different fiber types varies strikingly between species, and in humans shows significant variability between individuals. Myosin heavy chain isoforms, whose complete inventory and expression pattern are now available, provide a useful marker for fiber types, both for the four major forms present in trunk and limb muscles and the minor forms present in head and neck muscles. However, muscle fiber diversity involves all functional muscle cell compartments, including membrane excitation, excitation-contraction coupling, contractile machinery, cytoskeleton scaffold, and energy supply systems. Variations within each compartment are limited by the need of matching fiber type properties between different compartments. Nerve activity is a major control mechanism of the fiber type profile, and multiple signaling pathways are implicated in activity-dependent changes of muscle fibers. The characterization of these pathways is raising increasing interest in clinical medicine, given the potentially beneficial effects of muscle fiber type switching in the prevention and treatment of metabolic diseases.

2,107 citations

Journal ArticleDOI

2,096 citations

Journal ArticleDOI
TL;DR: Whether or not changes in the plasma cholesterol concentration alter sterol metabolism in the CNS or whether such changes affect cognitive function in the brain or the incidence of dementia remain uncertain at this time.

932 citations

Journal ArticleDOI
TL;DR: It is suggested that cell size and elemental stoichiometry are promising ecophysiological traits for modelling and tracking changes in phytoplankton community structure in response to climate change.
Abstract: Global increases in atmospheric CO2 and temperature are associated with changes in ocean chemistry and circulation, altering light and nutrient regimes. Resulting changes in phytoplankton community structure are expected to have a cascading effect on primary and export production, food web dynamics and the structure of the marine food web as well the biogeochemical cycling of carbon and bio-limiting elements in the sea. A review of current literature indicates cell size and elemental stoichiometry often respond predictably to abiotic conditions and follow biophysical rules that link environmental conditions to growth rates, and growth rates to food web interactions, and consequently to the biogeochemical cycling of elements. This suggests that cell size and elemental stoichiometry are promising ecophysiological traits for modelling and tracking changes in phytoplankton community structure in response to climate change. In turn, these changes are expected to have further impacts on phytoplankton community structure through as yet poorly understood secondary processes associated with trophic dynamics.

919 citations

Journal ArticleDOI
TL;DR: It is argued that conceptual unification across ecology, genetics, evolution and physiology has fostered even more fertile questions that have far reaching implications for the understanding of how ecosystem function and biodiversity will withstand environmental changes in the 21st century.
Abstract: Over the past 20 years, major advances have clarified how ecological patterns inform theory, and how in turn theory informs applied ecology. Also, there has been an increased recognition that the problem of scale at which ecological processes should be considered is critical if we are to produce general predictions. Ecological dynamics is always stochastic at small scales, but variability is conditional on the scale of description. The radical changes in the scope and aims of ecology over the past decades reflect in part the need to address pressing societal issues of environmental change. Technological advances in molecular biology, global positioning, sensing instrumentation and computational power should not be overlooked as an explanation for these radical changes. However, I argue that conceptual unification across ecology, genetics, evolution and physiology has fostered even more fertile questions. We are moving away from the view that evolution is played in a fixed ecological theatre: the theatre is being rapidly and relentlessly redesigned by the players themselves. The maintenance of ecosystem functions depends on shifts in species assemblages and on cellular metabolism, not only on flows of energy and matter. These findings have far reaching implications for our understanding of how ecosystem function and biodiversity will withstand (or not) environmental changes in the 21st century.

862 citations