scispace - formally typeset
Search or ask a question
Author

Maxime Jacques

Bio: Maxime Jacques is an academic researcher from McGill University. The author has contributed to research in topics: Silicon photonics & Silicon on insulator. The author has an hindex of 12, co-authored 43 publications receiving 446 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Doped-Si-based heaters are the most practical and efficient on standard SOI and the layout density of highly integrated dies is optimized, and internal and external thermal crosstalk for tunable Mach-Zehnder interferometers is experimentally characterized.
Abstract: We first optimize the design and compare the performance of thermo-optic phase-shifters based on TiN metal and N++ doped silicon, in the same SOI process. The designs don’t require special material processing, show negligible loss, and have very stable power consumption. The optimum TiN design has a switching powerPπ=21.4 mW and a time constantτ=5.6 µs, whereasPπ=22.8 mW andτ=2.2 µs for the best N++ Si design, enabling 2.5x faster switching compared to the metal heater. Doped-Si-based heaters are therefore the most practical and efficient on standard SOI. In addition, to optimize the layout density of highly integrated dies, we experimentally characterize internal and external thermal crosstalk for tunable Mach-Zehnder interferometers (MZIs) based on both heater designs for various power, distances, and etching patterns. Deep trenches are the best structures not involving special fabrication techniques to mitigate heat leakage affecting phase-sensitive devices close to heaters. Given the numerous applications of thermal tuners, this work is relevant to almost all silicon photonics designers.

132 citations

Journal ArticleDOI
TL;DR: It is shown that the ME-MZM provides a clear advantage in achieving higher baud PAM-4 generation and transmission compared to a TWMZZM.
Abstract: We present an experimental study and analysis of a travelling wave series push-pull silicon photonic multi-electrode Mach-Zehnder modulator (ME-MZM) and compare its performance with a single-electrode travelling wave Mach-Zehnder modulator (TWMZM) Utilizing the functionality of the ME-MZM structure plus digital-signal-processing, we report: 1) the C-band transmission of 84 Gb/s OOK modulated data below the KP4 forward error correction threshold with 2 Vpp drive voltage over a distance of 2 km; 2) the transmission of a 128 Gb/s optical 4-level pulse amplitude modulated signal over 1 km of fiber; and 3) the generation of a 168 Gb/s PAM-4 signal using two electrical OOK signals By comparing the transmission system performance measurements for the ME-MZM with measurements performed using a similar series push-pull TWMZM, we show that the ME-MZM provides a clear advantage in achieving higher baud PAM-4 generation and transmission compared to a TWMZM

78 citations

Journal ArticleDOI
TL;DR: In this paper, a broadband polarization beam splitter (PBS) based on a multimode interference coupler with internal photonic crystal (PC) for the silicon-on-insulator platform is presented.
Abstract: We experimentally demonstrate a compact broadband polarization beam splitter (PBS) based on a multimode interference (MMI) coupler with internal photonic crystal (PC) for the silicon-on-insulator platform. The internal PC structure is optimized to be reflective to the transverse electric polarization and transparent to the transverse magnetic polarization over a broad wavelength range. A detailed study of the device operation, including the photonic band gap and the influence of the internal PC structure on each mode of the MMI coupler, is presented. The designed PBS has been fabricated using electron beam lithography and the feature size used in our design is CMOS compatible. The fabricated device achieves measured extinction ratios higher than 20 dB and insertion losses lower than 2 dB for both polarizations over a 77 nm wavelength range from 1522 to 1599 nm that covers the entire C -band, with a device length of only 71.5 $\mu$ m.

60 citations

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate ultracompact single-stage and cascaded optical add-drop multiplexers using misaligned sidewall Bragg grating in a Mach-Zehnder interferometer for the silicon-on-insulator platform.
Abstract: We experimentally and via simulations demonstrate ultracompact single-stage and cascaded optical add-drop multiplexers using misaligned sidewall Bragg grating in a Mach–Zehnder interferometer for the silicon-on-insulator platform. The single-stage configuration has a device footprint of 400 ${\mu }\text{m}\,\times$ 90 ${\mu }\text{m}$ , and the cascaded configuration has a footprint of 400 ${\mu }\text{m}\,\times$ 125 ${\mu }\text{m}$ . The proposed designs have 3-dB bandwidths of 6 nm and extinction ratios of 25 dB and 51 dB, respectively, and have been fabricated for the transverse electric mode. A minimum lithographic feature size of 80 nm is used in our design, which is within the limitation of 193 nm deep ultraviolet lithography.

43 citations

Journal ArticleDOI
TL;DR: The refractive index of the gap region between two coupling waveguides is effectively increased using subwavelength grating, which leads to high-performance operation and a compact design footprint, with a mode-evolution length of only 25 µm and an entire device length of 65 µm.
Abstract: We demonstrate a compact high-performance adiabatic 3-dB coupler for the silicon-on-insulator platform. The refractive index of the gap region between two coupling waveguides is effectively increased using subwavelength grating, which leads to high-performance operation and a compact design footprint, with a mode-evolution length of only 25 µm and an entire device length of 65 µm. The designed adiabatic 3-dB coupler has been fabricated using electron beam lithography and the feature size used in our design is CMOS compatible. The fabricated device is characterized in the wavelength range from 1500 nm to 1600 nm, with a measured power splitting ratio better than 3 ± 0.27 dB and an average insertion loss of 0.20 dB.

39 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate a Mach-Zehnder modulator with high linearity, high bandwidth, and low manufacturing cost on a silicon and lithium niobate hybrid integration platform.
Abstract: Optical modulators are at the heart of optical communication links. Ideally, they should feature low loss, low drive voltage, large bandwidth, high linearity, compact footprint and low manufacturing cost. Unfortunately, these criteria have been achieved only on separate occasions. Based on a silicon and lithium niobate hybrid integration platform, we demonstrate Mach–Zehnder modulators that simultaneously fulfil these criteria. The presented device exhibits an insertion loss of 2.5 dB, voltage–length product of 2.2 V cm in single-drive push–pull operation, high linearity, electro-optic bandwidth of at least 70 GHz and modulation rates up to 112 Gbit s−1. The high-performance modulator is realized by seamless integration of a high-contrast waveguide based on lithium niobate—a popular modulator material—with compact, low-loss silicon circuitry. The hybrid platform demonstrated here allows for the combination of ‘best-in-breed’ active and passive components, opening up new avenues for future high-speed, energy-efficient and cost-effective optical communication networks. Low-loss, high-speed and efficient optical modulators on a silicon platform are demonstrated.

558 citations

Journal ArticleDOI
TL;DR: In this article, a Mach-Zehnder modulator with high-contrast waveguide based on a Silicon and Lithium Niobate hybrid integration platform has been demonstrated for high-speed, energy efficient and cost-effective optical communication networks.
Abstract: Optical modulators are at the heart of optical communication links Ideally, they should feature low insertion loss, low drive voltage, large modulation bandwidth, high linearity, compact footprint and low manufacturing cost Unfortunately, these criteria have only been achieved on separate occasionsBased on a Silicon and Lithium Niobate hybrid integration platform, we demonstrate Mach-Zehnder modulators that simultaneously fulfill these criteria The presented device exhibits an insertion loss of 25 dB, voltage-length product of 22 Vcm, high linearity, electro-optic bandwidth of at least 70 GHz and modulation rates up to 112 Gbit/s The high-performance modulator is realized by seamless integration of high-contrast waveguide based on Lithium Niobate - the most mature modulator material - with compact, low-loss silicon circuits The hybrid platform demonstrated here allows for the combination of 'best-in-breed' active and passive components, opening up new avenues for enabling future high-speed, energy efficient and cost-effective optical communication networks

431 citations

Journal ArticleDOI
20 Nov 2018
TL;DR: This review paper analyzes optical technologies that will enable next-generation data center optical interconnects to address the challenges of terabit/s links and networks at the laser, modulator, photodiode, and switch levels.
Abstract: Modern data centers increasingly rely on interconnects for delivering critical communications connectivity among numerous servers, memory, and computation resources. Data center interconnects turned to optical communications almost a decade ago, and the recent acceleration in data center requirements is expected to further drive photonic interconnect technologies deeper into the systems architecture. This review paper analyzes optical technologies that will enable next-generation data center optical interconnects. Recent progress addressing the challenges of terabit/s links and networks at the laser, modulator, photodiode, and switch levels is reported and summarized.

349 citations

Journal ArticleDOI
TL;DR: In this article, LiNiobate-on-insulator based in-phase/quadrature (IQ) electro-optic modulators are proposed for coherent transmission.
Abstract: The coherent transmission technology using digital signal processing and advanced modulation formats, is bringing networks closer to the theoretical capacity limit of optical fibres, the Shannon limit. The in-phase/quadrature electro-optic modulator that encodes information on both the amplitude and the phase of light, is one of the underpinning devices for the coherent transmission technology. Ideally, such modulator should feature a low loss, low drive voltage, large bandwidth, low chirp and compact footprint. However, these requirements have been only met on separate occasions. Here, we demonstrate integrated thin-film lithium niobate in-phase/quadrature modulators that fulfil these requirements simultaneously. The presented devices exhibit greatly improved overall performance (half-wave voltage, bandwidth and optical loss) over traditional lithium niobate counterparts, and support modulation data rate up to 320 Gbit s−1. Our devices pave new routes for future high-speed, energy-efficient, and cost-effective communication networks. In-phase/quadrature (IQ) electro-optic modulators are underpinning devices for coherent transmission technology. Here the authors present IQ modulators in the lithium-niobate-on-insulator platform, which provide improved overall performance and advanced modulation formats for future coherent transmission systems.

222 citations

Journal ArticleDOI
Jie Sun1, Ranjeet Kumar1, Meer Sakib1, Jeffrey B. Driscoll1, Hasitha Jayatilleka1, Haisheng Rong1 
TL;DR: In this paper, the first demonstration of a silicon photonic microring modulator with modulation data rate up to 128Gb/s (64Gbaud PAM4) was reported.
Abstract: We report the first demonstration of a silicon photonic microring modulator with modulation data rate up to 128 Gb/s (64 Gbaud PAM4). The microring modulator exhibits an electro-optic phase efficiency of V $_\pi \cdot$ L = 0.52 V $\cdot$ cm, an electro-optic bandwidth of 50 GHz, and a measured transmitter dispersion eye closure quaternary of 3.0 dB at this data rate. In addition, the resonant wavelength of the microring modulator can be tuned across a full free spectral range using an integrated heater with a thermo-optic phase efficiency of 19.5 mW $/\pi$ -phase shift.

166 citations