scispace - formally typeset
Search or ask a question
Author

Maxwell L. Elliott

Bio: Maxwell L. Elliott is an academic researcher from Duke University. The author has contributed to research in topics: Cognitive decline & Population. The author has an hindex of 14, co-authored 43 publications receiving 919 citations. Previous affiliations of Maxwell L. Elliott include National Institutes of Health & University of Otago.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a meta-analysis of 90 experiments (N = 1,008) revealed poor overall reliability-mean intraclass correlation coefficient (ICC) =.397.
Abstract: Identifying brain biomarkers of disease risk is a growing priority in neuroscience. The ability to identify meaningful biomarkers is limited by measurement reliability; unreliable measures are unsuitable for predicting clinical outcomes. Measuring brain activity using task functional MRI (fMRI) is a major focus of biomarker development; however, the reliability of task fMRI has not been systematically evaluated. We present converging evidence demonstrating poor reliability of task-fMRI measures. First, a meta-analysis of 90 experiments (N = 1,008) revealed poor overall reliability-mean intraclass correlation coefficient (ICC) = .397. Second, the test-retest reliabilities of activity in a priori regions of interest across 11 common fMRI tasks collected by the Human Connectome Project (N = 45) and the Dunedin Study (N = 20) were poor (ICCs = .067-.485). Collectively, these findings demonstrate that common task-fMRI measures are not currently suitable for brain biomarker discovery or for individual-differences research. We review how this state of affairs came to be and highlight avenues for improving task-fMRI reliability.

365 citations

Journal ArticleDOI
01 Apr 2020
TL;DR: The finding that most mental disorder life histories involve different successive disorders helps to account for genetic and neuroimaging findings pointing to transdiagnostic causes and cautions against overreliance on diagnosis-specific research and clinical protocols.
Abstract: Importance Mental health professionals typically encounter patients at 1 point in patients’ lives. This cross-sectional window understandably fosters focus on the current presenting diagnosis. Research programs, treatment protocols, specialist clinics, and specialist journals are oriented to presenting diagnoses, on the assumption that diagnosis informs about causes and prognosis. This study tests an alternative hypothesis: people with mental disorders experience many different kinds of disorders across diagnostic families, when followed for 4 decades. Objective To describe mental disorder life histories across the first half of the life course. Design, Setting, and Participants This cohort study involved participants born in New Zealand from 1972 to 1973 who were enrolled in the population-representative Dunedin Study. Participants were observed from birth to age 45 years (until April 2019). Data were analyzed from May 2019 to January 2020. Main Outcomes and Measures Diagnosed impairing disorders were assessed 9 times from ages 11 to 45 years. Brain function was assessed through neurocognitive examinations conducted at age 3 years, neuropsychological testing during childhood and adulthood, and midlife neuroimaging-based brain age. Results Of 1037 original participants (535 male [51.6%]), 1013 had mental health data available. The proportions of participants meeting the criteria for a mental disorder were as follows: 35% (346 of 975) at ages 11 to 15 years, 50% (473 of 941) at age 18 years, 51% (489 of 961) at age 21 years, 48% (472 of 977) at age 26 years, 46% (444 of 969) at age 32 years, 45% (429 of 955) at age 38 years, and 44% (407 of 927) at age 45 years. The onset of the disorder occurred by adolescence for 59% of participants (600 of 1013), eventually affecting 86% of the cohort (869 of 1013) by midlife. By age 45 years, 85% of participants (737 of 869) with a disorder had accumulated comorbid diagnoses. Participants with adolescent-onset disorders subsequently presented with disorders at more past-year assessments (r = 0.71; 95% CI, 0.68 to 0.74;P Conclusions and Relevance These findings suggest that mental disorder life histories shift among different successive disorders. Data from the present study, alongside nationwide data from Danish health registers, inform a life-course perspective on mental disorders. This perspective cautions against overreliance on diagnosis-specific research and clinical protocols.

254 citations

Journal ArticleDOI
TL;DR: General functional connectivity (GFC) is presented as a method for leveraging shared features across resting‐state and task fMRI and it is demonstrated that GFC offers better test‐retest reliability than intrinsic connectivity estimated from the same amount of resting‐ state data alone.

200 citations

Journal ArticleDOI
TL;DR: Initial evidence is provided that the transdiagnostic risk for common forms of mental illness is associated with patterns of inefficient connectome-wide intrinsic connectivity between visual association cortex and networks supporting executive control and self-referential processes, networks that are often impaired across categorical disorders.

128 citations

Journal ArticleDOI
TL;DR: The findings help to validate brainAGE as a potential surrogate biomarker for midlife intervention studies that seek to measure dementia-prevention efforts in midlife and caution against the assumption that brainAGE scores represent only age-related deterioration of the brain as they may also index central nervous system variation present since childhood.
Abstract: An individual’s brainAGE is the difference between chronological age and age predicted from machine-learning models of brain-imaging data. BrainAGE has been proposed as a biomarker of age-related deterioration of the brain. Having an older brainAGE has been linked to Alzheimer’s, dementia, and mortality. However, these findings are largely based on cross-sectional associations which can confuse age differences with cohort differences. To illuminate the validity of brainAGE as a biomarker of accelerated brain aging, a study is needed of a large cohort all born in the same year who nevertheless vary on brainAGE. In the Dunedin Study, a population-representative 1972–73 birth cohort, we measured brainAGE at age 45 years, as well as the pace of biological aging and cognitive decline in longitudinal data from childhood to midlife (N = 869). In this cohort, all chronological age 45 years, brainAGE was measured reliably (ICC = 0.81) and ranged from 24 to 72 years. Those with older midlife brainAGEs tended to have poorer cognitive function in both adulthood and childhood, as well as impaired brain health at age 3. Furthermore, those with older brainAGEs had an accelerated pace of biological aging, older facial appearance, and early signs of cognitive decline from childhood to midlife. These findings help to validate brainAGE as a potential surrogate biomarker for midlife intervention studies that seek to measure dementia-prevention efforts in midlife. However, the findings also caution against the assumption that brainAGE scores represent only age-related deterioration of the brain as they may also index central nervous system variation present since childhood.

112 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The very reason such tasks produce robust and easily replicable experimental effects – low between-participant variability – makes their use as correlational tools problematic, and it is demonstrated that taking reliability estimates into account has the potential to qualitatively change theoretical conclusions.
Abstract: Individual differences in cognitive paradigms are increasingly employed to relate cognition to brain structure, chemistry, and function. However, such efforts are often unfruitful, even with the most well established tasks. Here we offer an explanation for failures in the application of robust cognitive paradigms to the study of individual differences. Experimental effects become well established – and thus those tasks become popular – when between-subject variability is low. However, low between-subject variability causes low reliability for individual differences, destroying replicable correlations with other factors and potentially undermining published conclusions drawn from correlational relationships. Though these statistical issues have a long history in psychology, they are widely overlooked in cognitive psychology and neuroscience today. In three studies, we assessed test-retest reliability of seven classic tasks: Eriksen Flanker, Stroop, stop-signal, go/no-go, Posner cueing, Navon, and Spatial-Numerical Association of Response Code (SNARC). Reliabilities ranged from 0 to .82, being surprisingly low for most tasks given their common use. As we predicted, this emerged from low variance between individuals rather than high measurement variance. In other words, the very reason such tasks produce robust and easily replicable experimental effects – low between-participant variability – makes their use as correlational tools problematic. We demonstrate that taking such reliability estimates into account has the potential to qualitatively change theoretical conclusions. The implications of our findings are that well-established approaches in experimental psychology and neuropsychology may not directly translate to the study of individual differences in brain structure, chemistry, and function, and alternative metrics may be required.

869 citations

ComponentDOI
12 Aug 2014-PLOS ONE

394 citations

Journal ArticleDOI
TL;DR: In this article, a meta-analysis of 90 experiments (N = 1,008) revealed poor overall reliability-mean intraclass correlation coefficient (ICC) =.397.
Abstract: Identifying brain biomarkers of disease risk is a growing priority in neuroscience. The ability to identify meaningful biomarkers is limited by measurement reliability; unreliable measures are unsuitable for predicting clinical outcomes. Measuring brain activity using task functional MRI (fMRI) is a major focus of biomarker development; however, the reliability of task fMRI has not been systematically evaluated. We present converging evidence demonstrating poor reliability of task-fMRI measures. First, a meta-analysis of 90 experiments (N = 1,008) revealed poor overall reliability-mean intraclass correlation coefficient (ICC) = .397. Second, the test-retest reliabilities of activity in a priori regions of interest across 11 common fMRI tasks collected by the Human Connectome Project (N = 45) and the Dunedin Study (N = 20) were poor (ICCs = .067-.485). Collectively, these findings demonstrate that common task-fMRI measures are not currently suitable for brain biomarker discovery or for individual-differences research. We review how this state of affairs came to be and highlight avenues for improving task-fMRI reliability.

365 citations

Journal ArticleDOI
TL;DR: A cross-disorder ‘connectome landscape of dysconnectivity’ is outlined along principal dimensions of network organization that may place shared connectome alterations between brain disorders in a common framework.
Abstract: Many human brain disorders are associated with characteristic alterations in the structural and functional connectivity of the brain. In this article, we explore how commonalities and differences in connectome alterations can reveal relationships across disorders. We survey recent literature on connectivity changes in neurological and psychiatric disorders in the context of key organizational principles of the human connectome and observe that several disturbances to network properties of the human brain have a common role in a wide range of brain disorders and point towards potentially shared network mechanisms underpinning disorders. We hypothesize that the distinct dimensions along which connectome networks are organized (for example, ‘modularity’ and ‘integration’) provide a general coordinate system that allows description and categorization of relationships between seemingly disparate disorders. We outline a cross-disorder ‘connectome landscape of dysconnectivity’ along these principal dimensions of network organization that may place shared connectome alterations between brain disorders in a common framework. In this Opinion article, Martijn van den Heuvel and Olaf Sporns examine alterations in structural and functional brain connectivity across brain disorders. They propose a common landscape for such alterations that is based on principles of network organization.

296 citations

23 Sep 2014
TL;DR: This work identifies several common genetic variants associated with cognitive performance using a two-stage approach: a genome-wide association study of educational attainment to generate a set of candidates, and then the association of these variants with Cognitive performance is estimated.
Abstract: We identify common genetic variants associated with cognitive performance using a two-stage approach, which we call the proxyphenotype method. First, we conduct a genome-wide association study of educational attainment in a large sample (n = 106,736), which produces a set of 69 education-associated SNPs. Second, using independent samples (n = 24,189), we measure the association of these education-associated SNPs with cognitive performance. Three SNPs (rs1487441, rs7923609, and rs2721173) are significantly associated with cognitive performance after correction for multiple hypothesis testing. In an independent sample of older Americans (n = 8,652), we also show that a polygenic score derived from the education-associated SNPs is associated with memory and absence of dementia. Convergent evidence from a set of bioinformatics analyses implicates four specific genes (KNCMA1, NRXN1, POU2F3, and SCRT). All of these genes are associated with a particular neurotransmitter pathway involved in synaptic plasticity, the main cellular mechanism for learning and memory.

237 citations