scispace - formally typeset
Search or ask a question
Author

Maya Simionescu

Bio: Maya Simionescu is an academic researcher from Romanian Academy. The author has contributed to research in topics: Endothelial stem cell & Endothelium. The author has an hindex of 47, co-authored 192 publications receiving 10608 citations.


Papers
More filters
Book ChapterDOI
01 Jan 1983

3,419 citations

Journal ArticleDOI
TL;DR: Results suggest that on the capillary endothelia examined, the Alb-Au is adsorbed on specific binding sites restricted to uncoated pits and plasmalemmal vesicles, suggesting a specific mechanism for the transport of albumin and other molecules carried by this protein.
Abstract: The interaction of homologous and heterologous albumin-gold complex (Alb-Au) with capillary endothelium was investigated in the mouse lung, heart, and diaphragm. Perfusion of the tracer in situ for from 3 to 35 min was followed by washing with phosphate-buffered saline, fixation by perfusion, and processing for electron microscopy. From the earliest time examined, one and sometimes two rows of densely packed particles bound to some restricted plasma membrane microdomains that appeared as uncoated pits, and to plasmalemmal vesicles open on the luminal front. Morphometric analysis, using various albumin-gold concentrations, showed that the binding is saturable at a very low concentration of the ligand and short exposure. After 5 min, tracer-carrying vesicles appeared on the abluminal front, discharging their content into the subendothelial space. As a function of tracer concentration 1-10% of plasmalemmal vesicles contained Alb-Au particles in fluid phase; from 5 min on, multivesicular bodies were labeled by the tracer. Plasma membrane, coated pits, and coated vesicles were not significantly marked at any time interval. Heparin or high ionic strength did not displace the bound Alb-Au from vesicle membrane. No binding was obtained when Alb-Au was competed in situ with albumin or was injected in vivo. Gold complexes with fibrinogen, fibronectin, glucose oxidase, or polyethyleneglycol did not give a labeling comparable to that of albumin. These results suggest that on the capillary endothelia examined, the Alb-Au is adsorbed on specific binding sites restricted to uncoated pits and plasmalemmal vesicles. The tracer is transported in transcytotic vesicles across endothelium by receptor-mediated transcytosis, and to a lesser extent is taken up by pinocytotic vesicles. The existence of albumin receptors on these continuous capillary endothelia may provide a specific mechanism for the transport of albumin and other molecules carried by this protein.

374 citations

Journal ArticleDOI
TL;DR: The results indicate that the arterial endothelium possesses a dual mechanism for handling circulating LDL: by a high affinity process, endocytosis secures the endothelial cells' need for cholesterol; by a low-affinity nonsaturable uptake process, transcytosis supplies cholesterol to the other cells of the vascular wall, and can monitor an excessive accumulation of plasma LDL.
Abstract: We investigated the interaction and transport of low-density lipoprotein (LDL) through the arterial endothelium in rat aorta and coronary artery, by perfusing in situ native, untagged human, and rat LDL. The latter was rendered electron-opaque after it interacted with the endothelial cell and was subsequently fixed within tissue. We achieved LDL electron-opacity by an improved fixation procedure using 3,3'-diaminobenzidine, and mordanting with tannic acid. The unequivocal identification of LDL was implemented by reacting immunocytochemically the perfused LDL with anti LDL-horseradish peroxidase conjugate. Results indicate that LDL is taken up and internalized through two parallel compartmented routes. (a) A relatively small amount of LDL is taken up by endocytosis via: (i) a receptor-mediated process (adsorptive endocytosis) that involved coated pits/vesicles, and endosomes, and, probably, (ii) a receptor-independent process (fluid endocytosis) carried out by a fraction of plasmalemmal vesicles. Both mechanisms bringing LDL to lysosomes supply cholesterol to the endothelial cell itself. (b) Most circulating LDL is transported across the endothelial cell by transcytosis via plasmalemmal vesicles which deliver LDL to the other cells of the vessel wall. Endocytosis is not enhanced by increasing LDL concentration, but the receptor-mediated internalization decreases at low temperature. Transcytosis is less modified by low temperature but is remarkably augmented at high concentration of LDL. While the endocytosis of homologous (rat) LDL is markedly more pronounced than that of heterologous (human) LDL, both types of LDL are similarly transported by transcytosis. These results indicate that the arterial endothelium possesses a dual mechanism for handling circulating LDL: by a high affinity process, endocytosis secures the endothelial cells' need for cholesterol; by a low-affinity nonsaturable uptake process, transcytosis supplies cholesterol to the other cells of the vascular wall, and can monitor an excessive accumulation of plasma LDL. Since in most of our experiments we used LDL concentrations above those found in normal rats, we presume that at low LDL concentrations saturable high-affinity uptake would be enhanced in relation to nonsaturable pathways.

346 citations

Journal ArticleDOI
TL;DR: The data demonstrate that FcRn is expressed in functionally active form in endothelial cells, indicating that these cells are a possible site at which serum IgG homeostasis is maintained.
Abstract: Our recent data indicate that the MHC class I-related receptor, FcRn, plays a role in regulating serum IgG levels, in addition to its known role in transferring IgG from mother to young. In the current study, the distribution of FcRn in adult mice has been investigated using several approaches. First, tissue distribution of anti-FcRn F(ab')2, murine IgG1 and recombinant, IgG1-derived Fc-hinge fragments has been analyzed, and these FcRn binding proteins localize predominantly in skin and muscle with lesser amounts in liver and adipose tissue. Second, histochemical analyses of muscle and liver with anti-FcRn F(ab')2 indicate that FcRn is expressed in the endothelium of small arterioles and capillaries, but not in larger vessels such as the central vein and portal vasculature. Third, immunoprecipitation and immunofluorescence studies of cultured murine endothelial cells show that functional FcRn is expressed in these cells, and is located within vesicular structures in the cytosol and not on the membrane. Taken together the data demonstrate that FcRn is expressed in functionally active form in endothelial cells, indicating that these cells are a possible site at which serum IgG homeostasis is maintained.

264 citations

Journal ArticleDOI
TL;DR: Prolonged and/or repeated exposure to cardiovascular risk factors can ultimately exhaust the protective effect of the endogenous anti-inflammatory system within EC, and as a consequence, EC may progress to senescence, lose their integrity and detach into the circulation.
Abstract: Their strategic location between blood and tissue and their constitutive properties allow endothelial cells (EC) to monitor the transport of plasma molecules, by employing bidirectional receptor-mediated and receptor-independent transcytosis and endocytosis, and to regulate vascular tone, cellular cholesterol and lipid homeostasis. These cells are also involved in signal transduction, immunity, inflammation and haemostasis. Cardiovascular risk factors, such as hyperlipaemia/dyslipidaemia trigger the molecular machinery of EC to respond to insults by modulation of their constitutive functions followed by dysfunction and ultimately by injury and apoptosis. The gradual activation of EC consists initially in the modulation of two constitutive functions: (1) permeability, i.e. increased transcytosis of lipoproteins, and (2) biosynthetic activity, i.e. enhanced synthesis of the basement membrane and extracellular matrix. The increased transcytosis and the reduced efflux of β-lipoproteins (βLp) lead to their retention within the endothelial hyperplasic basal lamina as modified lipoproteins (MLp) and to their subsequent alteration (oxidation, glycation, enzymatic modifications). MLp generate chemoattractant and inflammatory molecules, triggering EC dysfunction (appearance of new adhesion molecules, secretion of chemokines, cytokines), characterised by monocyte recruitment, adhesion, diapedesis and residence within the subendothelium. In time, EC in the athero-prone areas alter their net negative surface charge, losing their non-thrombogenic ability, become loaded with lipid droplets and turn into foam cells. Prolonged and/or repeated exposure to cardiovascular risk factors can ultimately exhaust the protective effect of the endogenous anti-inflammatory system within EC. As a consequence, EC may progress to senescence, lose their integrity and detach into the circulation.

257 citations


Cited by
More filters
Journal ArticleDOI
05 Jun 1997-Nature
TL;DR: A new aspect of cell membrane structure is presented, based on the dynamic clustering of sphingolipids and cholesterol to form rafts that move within the fluid bilayer that function as platforms for the attachment of proteins when membranes are moved around inside the cell and during signal transduction.
Abstract: A new aspect of cell membrane structure is presented, based on the dynamic clustering of sphingolipids and cholesterol to form rafts that move within the fluid bilayer. It is proposed that these rafts function as platforms for the attachment of proteins when membranes are moved around inside the cell and during signal transduction.

9,436 citations

Journal ArticleDOI
TL;DR: This review summarizes the current state of knowledge of the functions of NOX enzymes in physiology and pathology.
Abstract: For a long time, superoxide generation by an NADPH oxidase was considered as an oddity only found in professional phagocytes. Over the last years, six homologs of the cytochrome subunit of the phag...

5,873 citations

Journal ArticleDOI
TL;DR: The two hypotheses to explain the pathogenesis of atherosclerosis, the "incrustation" hypothesis and the "lipid" hypothesis, are now known.
Abstract: IN the 19th century there were two major hypotheses to explain the pathogenesis of atherosclerosis: the "incrustation" hypothesis and the "lipid" hypothesis. The incrustation hypothesis of von Rokitansky,1 proposed in 1852 and modified by Duguid,2 suggested that intimal thickening resulted from fibrin deposition, with subsequent organization by fibroblasts and secondary lipid accumulation. The lipid hypothesis, proposed by Virchow3 in 1856, suggested that lipid in the arterial wall represented a transduction of blood lipid, which subsequently formed complexes with acid mucopolysaccharides; lipid accumulated in arterial walls because mechanisms of lipid deposition predominated over those of removal. The two hypotheses are now . . .

3,779 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the emotional, attentional and physiological aspects of stress reducing influences of nature, and found that both the stressor film and the nature settings elicited high levels of involuntary or automatic attention.

3,669 citations

Journal ArticleDOI
TL;DR: The relationship between detergent-resistant membranes, rafts, caveolae, and low-density plasma membrane fragments, and possible functions of lipid rafts in membranes are discussed.
Abstract: ▪ Abstract Recent studies showing that detergent-resistant membrane fragments can be isolated from cells suggest that biological membranes are not always in a liquid-crystalline phase. Instead, sph...

2,951 citations