scispace - formally typeset
Search or ask a question
Author

Mayank Vatsa

Bio: Mayank Vatsa is an academic researcher from Indraprastha Institute of Information Technology. The author has contributed to research in topics: Facial recognition system & Face detection. The author has an hindex of 44, co-authored 143 publications receiving 5198 citations. Previous affiliations of Mayank Vatsa include Indian Institute of Technology Delhi & University of Sassari.


Papers
More filters
Journal ArticleDOI

[...]

01 Aug 2008
TL;DR: This paper proposes algorithms for iris segmentation, quality enhancement, match score fusion, and indexing to improve both the accuracy and the speed of iris recognition.
Abstract: This paper proposes algorithms for iris segmentation, quality enhancement, match score fusion, and indexing to improve both the accuracy and the speed of iris recognition. A curve evolution approach is proposed to effectively segment a nonideal iris image using the modified Mumford-Shah functional. Different enhancement algorithms are concurrently applied on the segmented iris image to produce multiple enhanced versions of the iris image. A support-vector-machine-based learning algorithm selects locally enhanced regions from each globally enhanced image and combines these good-quality regions to create a single high-quality iris image. Two distinct features are extracted from the high-quality iris image. The global textural feature is extracted using the 1-D log polar Gabor transform, and the local topological feature is extracted using Euler numbers. An intelligent fusion algorithm combines the textural and topological matching scores to further improve the iris recognition performance and reduce the false rejection rate, whereas an indexing algorithm enables fast and accurate iris identification. The verification and identification performance of the proposed algorithms is validated and compared with other algorithms using the CASIA Version 3, ICE 2005, and UBIRIS iris databases.

272 citations

Proceedings ArticleDOI

[...]

23 Jun 2013
TL;DR: A new approach for spoofing detection in face videos using motion magnification using Eulerian motion magnification approach, which improves the state-of-art performance, especially HOOF descriptor yielding a near perfect half total error rate.
Abstract: For a robust face biometric system, a reliable anti-spoofing approach must be deployed to circumvent the print and replay attacks. Several techniques have been proposed to counter face spoofing, however a robust solution that is computationally efficient is still unavailable. This paper presents a new approach for spoofing detection in face videos using motion magnification. Eulerian motion magnification approach is used to enhance the facial expressions commonly exhibited by subjects in a captured video. Next, two types of feature extraction algorithms are proposed: (i) a configuration of LBP that provides improved performance compared to other computationally expensive texture based approaches and (ii) motion estimation approach using HOOF descriptor. On the Print Attack and Replay Attack spoofing datasets, the proposed framework improves the state-of-art performance, especially HOOF descriptor yielding a near perfect half total error rate of 0%and 1.25% respectively.

213 citations

Proceedings ArticleDOI

[...]

11 Nov 2010
TL;DR: A novel algorithm to recognize periocular images in visible spectrum is proposed and the results show promise towards using peroocular region for recognition when the information is not sufficient for iris recognition.
Abstract: The performance of iris recognition is affected if iris is captured at a distance. Further, images captured in visible spectrum are more susceptible to noise than if captured in near infrared spectrum. This research proposes periocular biometrics as an alternative to iris recognition if the iris images are captured at a distance. We propose a novel algorithm to recognize periocular images in visible spectrum and study the effect of capture distance on the performance of periocular biometrics. The performance of the algorithm is evaluated on more than 11,000 images of the UBIRIS v2 database. The results show promise towards using periocular region for recognition when the information is not sufficient for iris recognition.

177 citations

Journal ArticleDOI

[...]

TL;DR: The results on the plastic surgery database suggest that it is an arduous research challenge and the current state-of-art face recognition algorithms are unable to provide acceptable levels of identification performance, so that future face recognition systems will be able to address this important problem.
Abstract: Advancement and affordability is leading to the popularity of plastic surgery procedures. Facial plastic surgery can be reconstructive to correct facial feature anomalies or cosmetic to improve the appearance. Both corrective as well as cosmetic surgeries alter the original facial information to a large extent thereby posing a great challenge for face recognition algorithms. The contribution of this research is 1) preparing a face database of 900 individuals for plastic surgery, and 2) providing an analytical and experimental underpinning of the effect of plastic surgery on face recognition algorithms. The results on the plastic surgery database suggest that it is an arduous research challenge and the current state-of-art face recognition algorithms are unable to provide acceptable levels of identification performance. Therefore, it is imperative to initiate a research effort so that future face recognition systems will be able to address this important problem.

165 citations

Journal ArticleDOI

[...]

TL;DR: This paper presents a novel lens detection algorithm that can be used to reduce the effect of contact lenses and outperforms other lens detection algorithms on the two databases and shows improved iris recognition performance.
Abstract: The presence of a contact lens, particularly a textured cosmetic lens, poses a challenge to iris recognition as it obfuscates the natural iris patterns. The main contribution of this paper is to present an in-depth analysis of the effect of contact lenses on iris recognition. Two databases, namely, the IIIT-D Iris Contact Lens database and the ND-Contact Lens database, are prepared to analyze the variations caused due to contact lenses. We also present a novel lens detection algorithm that can be used to reduce the effect of contact lenses. The proposed approach outperforms other lens detection algorithms on the two databases and shows improved iris recognition performance.

149 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

[...]

01 Jan 1979
TL;DR: This special issue aims at gathering the recent advances in learning with shared information methods and their applications in computer vision and multimedia analysis and addressing interesting real-world computer Vision and multimedia applications.
Abstract: In the real world, a realistic setting for computer vision or multimedia recognition problems is that we have some classes containing lots of training data and many classes contain a small amount of training data. Therefore, how to use frequent classes to help learning rare classes for which it is harder to collect the training data is an open question. Learning with Shared Information is an emerging topic in machine learning, computer vision and multimedia analysis. There are different level of components that can be shared during concept modeling and machine learning stages, such as sharing generic object parts, sharing attributes, sharing transformations, sharing regularization parameters and sharing training examples, etc. Regarding the specific methods, multi-task learning, transfer learning and deep learning can be seen as using different strategies to share information. These learning with shared information methods are very effective in solving real-world large-scale problems. This special issue aims at gathering the recent advances in learning with shared information methods and their applications in computer vision and multimedia analysis. Both state-of-the-art works, as well as literature reviews, are welcome for submission. Papers addressing interesting real-world computer vision and multimedia applications are especially encouraged. Topics of interest include, but are not limited to: • Multi-task learning or transfer learning for large-scale computer vision and multimedia analysis • Deep learning for large-scale computer vision and multimedia analysis • Multi-modal approach for large-scale computer vision and multimedia analysis • Different sharing strategies, e.g., sharing generic object parts, sharing attributes, sharing transformations, sharing regularization parameters and sharing training examples, • Real-world computer vision and multimedia applications based on learning with shared information, e.g., event detection, object recognition, object detection, action recognition, human head pose estimation, object tracking, location-based services, semantic indexing. • New datasets and metrics to evaluate the benefit of the proposed sharing ability for the specific computer vision or multimedia problem. • Survey papers regarding the topic of learning with shared information. Authors who are unsure whether their planned submission is in scope may contact the guest editors prior to the submission deadline with an abstract, in order to receive feedback.

1,758 citations

Journal ArticleDOI

[...]

TL;DR: Computer and Robot Vision Vol.
Abstract: Computer and Robot Vision Vol. 1, by R.M. Haralick and Linda G. Shapiro, Addison-Wesley, 1992, ISBN 0-201-10887-1.

1,426 citations

Journal ArticleDOI

[...]

TL;DR: This survey covers the historical development and current state of the art in image understanding for iris biometrics and suggests a short list of recommended readings for someone new to the field to quickly grasp the big picture of irisBiometrics.
Abstract: This survey covers the historical development and current state of the art in image understanding for iris biometrics. Most research publications can be categorized as making their primary contribution to one of the four major modules in iris biometrics: image acquisition, iris segmentation, texture analysis and matching of texture representations. Other important research includes experimental evaluations, image databases, applications and systems, and medical conditions that may affect the iris. We also suggest a short list of recommended readings for someone new to the field to quickly grasp the big picture of iris biometrics.

933 citations

Journal ArticleDOI

[...]

TL;DR: The laws of categorical and comparative judgements of signal detection have been studied in the literature as mentioned in this paper for signal detection with equal variance with equal Variances, i.e., Gaussian Distributions of Signal and Noise with Unequal Variants.
Abstract: Contents: Foreword. Preface. What Are Statistical Decisions? Non-Parametric Measures of Sensitivity. Gaussian Distributions of Signal and Noise With Equal Variances. Gaussian Distributions of Signal and Noise With Unequal Variances. Conducting a Rating Scale Experiment. Choice Theory Approximations to Signal Detection Theory. Threshold Theory. The Laws of Categorical and Comparative Judgement. Appendices: Answers to Problems. Logarithms. Integration of the Expression for the Logistic Curve. Computer Programmes for Signal Detection Analysis. Tables.

781 citations