Author
Mayank Vatsa
Other affiliations: West Virginia University, Indian Institute of Technology, Jodhpur, Indian Institute of Technology Delhi
Bio: Mayank Vatsa is an academic researcher from Indraprastha Institute of Information Technology. The author has contributed to research in topics: Facial recognition system & Deep learning. The author has an hindex of 27, co-authored 120 publications receiving 2200 citations. Previous affiliations of Mayank Vatsa include West Virginia University & Indian Institute of Technology, Jodhpur.
Papers
More filters
TL;DR: An integrated image fusion and match score fusion of multispectral face images using [email protected] SVM and Dezert Smarandache theory of fusion which is based on plausible and paradoxical reasoning is presented.
Abstract: This paper presents an integrated image fusion and match score fusion of multispectral face images. The fusion of visible and long wave infrared face images is performed using [email protected] SVM which uses multiple SVMs to learn both the local and global properties of the multispectral face images at different granularity levels and resolution. The [email protected] performs accurate classification which is subsequently used to dynamically compute the weights of visible and infrared images for generating a fused face image. 2D log polar Gabor transform and local binary pattern feature extraction algorithms are applied to the fused face image to extract global and local facial features, respectively. The corresponding match scores are fused using Dezert Smarandache theory of fusion which is based on plausible and paradoxical reasoning. The efficacy of the proposed algorithm is validated using the Notre Dame and Equinox databases and is compared with existing statistical, learning, and evidence theory based fusion algorithms.
176 citations
TL;DR: This paper presents a face recognition algorithm that addresses two major challenges: when an individual intentionally alters the appearance and features using disguises, and when limited gallery images are available for recognition.
Abstract: This paper presents a face recognition algorithm that addresses two major challenges. The first is when an individual intentionally alters the appearance and features using disguises, and the second is when limited gallery images are available for recognition. The algorithm uses a dynamic neural network architecture to extract the phase features of the face texture using 2D log polar Gabor transform. The phase features are divided into frames which are matched using the Hamming distance. The performance of the proposed algorithm is evaluated using three databases that comprise of real and synthetic face images with different disguise artifacts. The performance of the algorithm is evaluated for decreasing number of gallery images and various types of disguises. In all cases the proposed algorithm shows a better performance compared to other existing algorithms.
112 citations
01 Jul 2017
TL;DR: A unique multispectral video face database for face presentation attack using latex and paper masks and it is observed that the thermal imaging spectrum is most effective in detecting face presentation attacks.
Abstract: Face recognition systems are susceptible to presentation attacks such as printed photo attacks, replay attacks, and 3D mask attacks. These attacks, primarily studied in visible spectrum, aim to obfuscate or impersonate a person's identity. This paper presents a unique multispectral video face database for face presentation attack using latex and paper masks. The proposed Multispectral Latex Mask based Video Face Presentation Attack (MLFP) database contains 1350 videos in visible, near infrared, and thermal spectrums. Since the database consists of videos of subjects without any mask as well as wearing ten different masks, the effect of identity concealment is analyzed in each spectrum using face recognition algorithms. We also present the performance of existing presentation attack detection algorithms on the proposed MLFP database. It is observed that the thermal imaging spectrum is most effective in detecting face presentation attacks.
104 citations
Posted Content•
TL;DR: This paper attempts to unravel three aspects related to the robustness of DNNs for face recognition in terms of vulnerabilities to attacks inspired by commonly observed distortions in the real world, and presents several effective countermeasures to mitigate the impact of adversarial attacks and improve the overall robustnessof DNN-based face recognition.
Abstract: Deep neural network (DNN) architecture based models have high expressive power and learning capacity. However, they are essentially a black box method since it is not easy to mathematically formulate the functions that are learned within its many layers of representation. Realizing this, many researchers have started to design methods to exploit the drawbacks of deep learning based algorithms questioning their robustness and exposing their singularities. In this paper, we attempt to unravel three aspects related to the robustness of DNNs for face recognition: (i) assessing the impact of deep architectures for face recognition in terms of vulnerabilities to attacks inspired by commonly observed distortions in the real world that are well handled by shallow learning methods along with learning based adversaries; (ii) detecting the singularities by characterizing abnormal filter response behavior in the hidden layers of deep networks; and (iii) making corrections to the processing pipeline to alleviate the problem. Our experimental evaluation using multiple open-source DNN-based face recognition networks, including OpenFace and VGG-Face, and two publicly available databases (MEDS and PaSC) demonstrates that the performance of deep learning based face recognition algorithms can suffer greatly in the presence of such distortions. The proposed method is also compared with existing detection algorithms and the results show that it is able to detect the attacks with very high accuracy by suitably designing a classifier using the response of the hidden layers in the network. Finally, we present several effective countermeasures to mitigate the impact of adversarial attacks and improve the overall robustness of DNN-based face recognition.
103 citations
Proceedings Article•
27 Apr 2018TL;DR: In this article, the authors investigated the impact of adversarial attacks on the robustness of DNN-based face recognition models and proposed several effective countermeasures to mitigate the impact.
Abstract: Deep neural network (DNN) architecture based models have high expressive power and learning capacity. However, they are essentially a black box method since it is not easy to mathematically formulate the functions that are learned within its many layers of representation. Realizing this, many researchers have started to design methods to exploit the drawbacks of deep learning based algorithms questioning their robustness and exposing their singularities. In this paper, we attempt to unravel three aspects related to the robustness of DNNs for face recognition: (i) assessing the impact of deep architectures for face recognition in terms of vulnerabilities to attacks inspired by commonly observed distortions in the real world that are well handled by shallow learning methods along with learning based adversaries; (ii) detecting the singularities by characterizing abnormal filter response behavior in the hidden layers of deep networks; and (iii) making corrections to the processing pipeline to alleviate the problem. Our experimental evaluation using multiple open-source DNN-based face recognition networks, including OpenFace and VGG-Face, and two publicly available databases (MEDS and PaSC) demonstrates that the performance of deep learning based face recognition algorithms can suffer greatly in the presence of such distortions. The proposed method is also compared with existing detection algorithms and the results show that it is able to detect the attacks with very high accuracy by suitably designing a classifier using the response of the hidden layers in the network. Finally, we present several effective countermeasures to mitigate the impact of adversarial attacks and improve the overall robustness of DNN-based face recognition.
102 citations
Cited by
More filters
Journal Article•
3,940 citations
15 Oct 2004
2,118 citations
01 Jan 1979
TL;DR: This special issue aims at gathering the recent advances in learning with shared information methods and their applications in computer vision and multimedia analysis and addressing interesting real-world computer Vision and multimedia applications.
Abstract: In the real world, a realistic setting for computer vision or multimedia recognition problems is that we have some classes containing lots of training data and many classes contain a small amount of training data. Therefore, how to use frequent classes to help learning rare classes for which it is harder to collect the training data is an open question. Learning with Shared Information is an emerging topic in machine learning, computer vision and multimedia analysis. There are different level of components that can be shared during concept modeling and machine learning stages, such as sharing generic object parts, sharing attributes, sharing transformations, sharing regularization parameters and sharing training examples, etc. Regarding the specific methods, multi-task learning, transfer learning and deep learning can be seen as using different strategies to share information. These learning with shared information methods are very effective in solving real-world large-scale problems. This special issue aims at gathering the recent advances in learning with shared information methods and their applications in computer vision and multimedia analysis. Both state-of-the-art works, as well as literature reviews, are welcome for submission. Papers addressing interesting real-world computer vision and multimedia applications are especially encouraged. Topics of interest include, but are not limited to: • Multi-task learning or transfer learning for large-scale computer vision and multimedia analysis • Deep learning for large-scale computer vision and multimedia analysis • Multi-modal approach for large-scale computer vision and multimedia analysis • Different sharing strategies, e.g., sharing generic object parts, sharing attributes, sharing transformations, sharing regularization parameters and sharing training examples, • Real-world computer vision and multimedia applications based on learning with shared information, e.g., event detection, object recognition, object detection, action recognition, human head pose estimation, object tracking, location-based services, semantic indexing. • New datasets and metrics to evaluate the benefit of the proposed sharing ability for the specific computer vision or multimedia problem. • Survey papers regarding the topic of learning with shared information. Authors who are unsure whether their planned submission is in scope may contact the guest editors prior to the submission deadline with an abstract, in order to receive feedback.
1,758 citations