scispace - formally typeset
Search or ask a question
Author

Mayeul d'Avezac

Bio: Mayeul d'Avezac is an academic researcher from University College London. The author has contributed to research in topics: Band gap & Direct and indirect band gaps. The author has an hindex of 16, co-authored 31 publications receiving 1327 citations. Previous affiliations of Mayeul d'Avezac include University of Paris & National Renewable Energy Laboratory.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors employ both theory and experiment to assess the PV relevant properties of SnS and clarify on whether SnS has an indirect or direct band gap and what is the minority carrier effective mass as a function of the film orientation.
Abstract: SnS is a potential earth-abundant photovoltaic (PV) material. Employing both theory and experiment to assess the PV relevant properties of SnS, we clarify on whether SnS has an indirect or direct band gap and what is the minority carrier effective mass as a function of the film orientation. SnS has a 1.07 eV indirect band gap with an effective absorption onset located 0.4 eV higher. The effective mass of minority carrier ranges from 0.5 m0 perpendicular to the van der Waals layers to 0.2 m0 into the van der Waals layers. The positive characteristics of SnS feature a desirable p-type carrier concentration due to the easy formation of acceptor-like intrinsic Sn vacancy defects. Potentially detrimental deep levels due to SnS antisite or S vacancy defects can be suppressed by suitable adjustment of the growth condition towards S-rich.

379 citations

Journal ArticleDOI
TL;DR: In this paper, the anti-site defects are the main source of electrical conductivity in spinel oxides and the trends in anti-sites transition levels are systemized, revealing fundamental "doping rules" so as to guide practical doping of these oxides.
Abstract: A2BO4 spinels constitute one of the largest groups of oxides, with potential applications in many areas of technology, including (transparent) conducting layers in solar cells. However, the electrical properties of most spinel oxides remain unknown and poorly controlled. Indeed, a significant bottleneck hindering widespread use of spinels as advanced electronic materials is the lack of understanding of the key defects rendering them as p-type or n-type conductors. By applying first-principles defect calculations to a large number of spinel oxides the major trends controlling their dopability are uncovered. Anti-site defects are the main source of electrical conductivity in these compounds. The trends in anti-sites transition levels are systemized, revealing fundamental “doping rules”, so as to guide practical doping of these oxides. Four distinct doping types (DTs) emerge from a high-throughput screening of a large number of spinel oxides: i) donor above acceptor, both are in the gap, i.e., both are electrically active and compensated (DT-1), ii) acceptor above donor, and only acceptor is in the gap, i.e., only acceptor is electrically active (DT-2), iii) acceptor above donor, and only donor is in the gap, i.e., only donor is electrically active (DT3), and iv) acceptor above donor in the gap, i.e., both donor and acceptor are electrically active, but not compensated (DT-4). Donors and acceptors in DT-1 materials compensate each other to a varying degree, and external doping is limited due to Fermi level pinning. Acceptors in DT-2 and donors in DT-3 are uncompensated and may ionize and create holes or electrons, and external doping can further enhance their concentration. Donor and acceptor in DT-4 materials do not compensate each other, and when the net concentration of carriers is small due to deep levels, it can be enhanced by external doping.

173 citations

Journal ArticleDOI
TL;DR: Zacros is developed, a FORTRAN2003 KMC package for simulating catalytic chemistries and it is shown that taking into account only first nearest-neighbor interactions may lead to large errors in the prediction of the catalytic rate, whereas for accurate estimates thereof, one needs to include long-range terms in the cluster expansion.
Abstract: Ab initio kinetic Monte Carlo (KMC) simulations have been successfully applied for over two decades to elucidate the underlying physico-chemical phenomena on the surfaces of heterogeneous catalysts. These simulations necessitate detailed knowledge of the kinetics of elementary reactions constituting the reaction mechanism, and the energetics of the species participating in the chemistry. The information about the energetics is encoded in the formation energies of gas and surface-bound species, and the lateral interactions between adsorbates on the catalytic surface, which can be modeled at different levels of detail. The majority of previous works accounted for only pairwise-additive first nearest-neighbor interactions. More recently, cluster-expansion Hamiltonians incorporating long-range interactions and many-body terms have been used for detailed estimations of catalytic rate [C. Wu, D. J. Schmidt, C. Wolverton, and W. F. Schneider, J. Catal. 286, 88 (2012)]. In view of the increasing interest in accurate predictions of catalytic performance, there is a need for general-purpose KMC approaches incorporating detailed cluster expansion models for the adlayer energetics. We have addressed this need by building on the previously introduced graph-theoretical KMC framework, and we have developed Zacros, a FORTRAN2003 KMC package for simulating catalytic chemistries. To tackle the high computational cost in the presence of long-range interactions we introduce parallelization with OpenMP. We further benchmark our framework by simulating a KMC analogue of the NO oxidation system established by Schneider and co-workers [J. Catal. 286, 88 (2012)]. We show that taking into account only first nearest-neighbor interactions may lead to large errors in the prediction of the catalytic rate, whereas for accurate estimates thereof, one needs to include long-range terms in the cluster expansion.

125 citations

Journal ArticleDOI
TL;DR: This work uses a combination of genetic algorithms with a pseudopotential Hamiltonian to search through the astronomic number of variants of Si(n)/Ge(m)/…/Si(p/Ge(q) superstructures grown on (001) Si(1-x)Ge(x), and reveals a robust configurational motif.
Abstract: Combining two indirect-gap materials-with different electronic and optical gaps-to create a direct gap material represents an ongoing theoretical challenge with potentially rewarding practical implications, such as optoelectronics integration on a single wafer. We provide an unexpected solution to this classic problem, by spatially melding two indirect-gap materials (Si and Ge) into one strongly dipole-allowed direct-gap material. We leverage a combination of genetic algorithms with a pseudopotential Hamiltonian to search through the astronomic number of variants of Si /Ge /.../Si /Ge superstructures grown on (001) Si Ge . The search reveals a robust configurational motif-SiGe Si Ge SiGe on (001) Si Ge substrate (x≤0.4) presenting a direct and dipole-allowed gap resulting from an enhanced Γ-X coupling at the band edges. © 2012 American Physical Society.

109 citations

Journal ArticleDOI
TL;DR: This work presents a self-interaction-corrected density-functional-theory approach for the description of systems with an unpaired electron or hole such as spin-$1∕2$ defect centers in solids or radicals and shows that it corrects for the well-known failures of standard DFT functionals in this system.
Abstract: We present a self-interaction-corrected (SIC) density-functional-theory (DFT) approach for the description of systems with an unpaired electron or hole such as spin-$1∕2$ defect centers in solids or radicals. Our functional is easy to implement and its minimization does not require additional computational effort with respect to ordinary DFT functionals. In particular it does not present multiminima, as do the conventional SIC functionals. We successfully validate the method studying the hole self-trapping in quartz associated with the Al substitutional impurity. We show that our approach corrects for the well-known failures of standard DFT functionals in this system.

82 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: QUANTUM ESPRESSO as discussed by the authors is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave).
Abstract: QUANTUM ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density-functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). The acronym ESPRESSO stands for opEn Source Package for Research in Electronic Structure, Simulation, and Optimization. It is freely available to researchers around the world under the terms of the GNU General Public License. QUANTUM ESPRESSO builds upon newly-restructured electronic-structure codes that have been developed and tested by some of the original authors of novel electronic-structure algorithms and applied in the last twenty years by some of the leading materials modeling groups worldwide. Innovation and efficiency are still its main focus, with special attention paid to massively parallel architectures, and a great effort being devoted to user friendliness. QUANTUM ESPRESSO is evolving towards a distribution of independent and interoperable codes in the spirit of an open-source project, where researchers active in the field of electronic-structure calculations are encouraged to participate in the project by contributing their own codes or by implementing their own ideas into existing codes.

19,985 citations

Journal ArticleDOI
TL;DR: The Materials Project (www.materialsproject.org) is a core program of the Materials Genome Initiative that uses high-throughput computing to uncover the properties of all known inorganic materials as discussed by the authors.
Abstract: Accelerating the discovery of advanced materials is essential for human welfare and sustainable, clean energy. In this paper, we introduce the Materials Project (www.materialsproject.org), a core program of the Materials Genome Initiative that uses high-throughput computing to uncover the properties of all known inorganic materials. This open dataset can be accessed through multiple channels for both interactive exploration and data mining. The Materials Project also seeks to create open-source platforms for developing robust, sophisticated materials analyses. Future efforts will enable users to perform ‘‘rapid-prototyping’’ of new materials in silico, and provide researchers with new avenues for cost-effective, data-driven materials design. © 2013 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

6,566 citations

Journal ArticleDOI
TL;DR: Recent extensions and improvements are described, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software.
Abstract: Quantum ESPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the-art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudopotential and projector-augmented-wave approaches Quantum ESPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement their ideas In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software

3,638 citations

Journal ArticleDOI
TL;DR: Quantum ESPRESSO as discussed by the authors is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the-art electronic-structure techniques, based on density functional theory, density functional perturbation theory, and many-body perturbations theory, within the plane-wave pseudo-potential and projector-augmented-wave approaches.
Abstract: Quantum ESPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudo-potential and projector-augmented-wave approaches. Quantum ESPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement theirs ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software.

2,818 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a survey of the use of Wannier functions in the context of electronic-structure theory, including their applications in analyzing the nature of chemical bonding, or as a local probe of phenomena related to electric polarization and orbital magnetization.
Abstract: The electronic ground state of a periodic system is usually described in terms of extended Bloch orbitals, but an alternative representation in terms of localized "Wannier functions" was introduced by Gregory Wannier in 1937. The connection between the Bloch and Wannier representations is realized by families of transformations in a continuous space of unitary matrices, carrying a large degree of arbitrariness. Since 1997, methods have been developed that allow one to iteratively transform the extended Bloch orbitals of a first-principles calculation into a unique set of maximally localized Wannier functions, accomplishing the solid-state equivalent of constructing localized molecular orbitals, or "Boys orbitals" as previously known from the chemistry literature. These developments are reviewed here, and a survey of the applications of these methods is presented. This latter includes a description of their use in analyzing the nature of chemical bonding, or as a local probe of phenomena related to electric polarization and orbital magnetization. Wannier interpolation schemes are also reviewed, by which quantities computed on a coarse reciprocal-space mesh can be used to interpolate onto much finer meshes at low cost, and applications in which Wannier functions are used as efficient basis functions are discussed. Finally the construction and use of Wannier functions outside the context of electronic-structure theory is presented, for cases that include phonon excitations, photonic crystals, and cold-atom optical lattices.

2,217 citations