scispace - formally typeset
Search or ask a question
Author

Maynard V. Olson

Bio: Maynard V. Olson is an academic researcher from University of Washington. The author has contributed to research in topics: Yeast artificial chromosome & Molecular cloning. The author has an hindex of 27, co-authored 39 publications receiving 12097 citations. Previous affiliations of Maynard V. Olson include Washington University in St. Louis.

Papers
More filters
Journal ArticleDOI
31 Aug 2000-Nature
TL;DR: It is proposed that the size and complexity of the P. aeruginosa genome reflect an evolutionary adaptation permitting it to thrive in diverse environments and resist the effects of a variety of antimicrobial substances.
Abstract: Pseudomonas aeruginosa is a ubiquitous environmental bacterium that is one of the top three causes of opportunistic human infections. A major factor in its prominence as a pathogen is its intrinsic resistance to antibiotics and disinfectants. Here we report the complete sequence of P. aeruginosa strain PAO1. At 6.3 million base pairs, this is the largest bacterial genome sequenced, and the sequence provides insights into the basis of the versatility and intrinsic drug resistance of P. aeruginosa. Consistent with its larger genome size and environmental adaptability, P. aeruginosa contains the highest proportion of regulatory genes observed for a bacterial genome and a large number of genes involved in the catabolism, transport and efflux of organic compounds as well as four potential chemotaxis systems. We propose that the size and complexity of the P. aeruginosa genome reflect an evolutionary adaptation permitting it to thrive in diverse environments and resist the effects of a variety of antimicrobial substances.

4,220 citations

Journal ArticleDOI
15 May 1987-Science
TL;DR: By offering a tenfold increase in the size of the DNA molecules that can be cloned into a microbial host, this system addresses a major gap in existing experimental methods for analyzing complex DNA sources.
Abstract: Fragments of exogenous DNA that range in size up to several hundred kilobase pairs have been cloned into yeast by ligating them to vector sequences that allow their propagation as linear artificial chromosomes. Individual clones of yeast and human DNA that have been analyzed by pulsed-field gel electrophoresis appear to represent faithful replicas of the source DNA. The efficiency with which clones can be generated is high enough to allow the construction of comprehensive libraries from the genomes of higher organisms. By offering a tenfold increase in the size of the DNA molecules that can be cloned into a microbial host, this system addresses a major gap in existing experimental methods for analyzing complex DNA sources.

1,488 citations

Journal ArticleDOI
01 May 2008-Nature
TL;DR: This work employs a clone-based method to interrogate intermediate structural variation in eight individuals of diverse geographic ancestry and provides the first high-resolution sequence map of human structural variation—a standard for genotyping platforms and a prelude to future individual genome sequencing projects.
Abstract: Genetic variation among individual humans occurs on many different scales, ranging from gross alterations in the human karyotype to single nucleotide changes. Here we explore variation on an intermediate scale--particularly insertions, deletions and inversions affecting from a few thousand to a few million base pairs. We employed a clone-based method to interrogate this intermediate structural variation in eight individuals of diverse geographic ancestry. Our analysis provides a comprehensive overview of the normal pattern of structural variation present in these genomes, refining the location of 1,695 structural variants. We find that 50% were seen in more than one individual and that nearly half lay outside regions of the genome previously described as structurally variant. We discover 525 new insertion sequences that are not present in the human reference genome and show that many of these are variable in copy number between individuals. Complete sequencing of 261 structural variants reveals considerable locus complexity and provides insights into the different mutational processes that have shaped the human genome. These data provide the first high-resolution sequence map of human structural variation--a standard for genotyping platforms and a prelude to future individual genome sequencing projects.

1,183 citations

Journal ArticleDOI
29 Sep 1989-Science
TL;DR: The polymerase chain reaction (PCR), a method that has only come into widespread use during the past 2 years, seems to offer a path toward a physical map that largely circumvents two problems that were prominent in the NRC Committee's discussions.
Abstract: In a report issued in January 1988, the National Research Council (NRC) Committee on the Mapping and Sequencing of the Human Genome, on which the present authors served, recommended a staged mapping and sequencing project with early emphases on physical mapping of human DNA, mapping and sequencing of the genomes of model organisms, and the development of sequencing technology (1). As the Committee's recommendations on physical mapping are beginning to be implemented on a substantial scale, it is timely to review these recommendations in the light of recent technical advances. In particular, the polymerase chain reaction (PCR) (2), a method that has only come into widespread use during the past 2 years, seems to us to offer a path toward a physical map that largely circumvents two problems that were prominent in the NRC Committee's discussions. One of these was the difficulty of merging mapping data gathered by diverse methods in different laboratories into a consensus physical map. The second was the logistics and expense of managing the huge collections of cloned segments on which the mapping data would depend almost absolutely.

828 citations

Journal ArticleDOI
04 Apr 1986-Science
TL;DR: Tuning the frequency of the field inversions from 10 to 0.01 hertz, makes it possible to resolve selectively DNA's in the size range 15 to greater than 700 kilobase pairs.
Abstract: In gel electrophoresis, nucleic acids and protein-detergent complexes larger than a threshold size all migrate at the same rate. For DNA molecules, this effect can be overcome by the simple procedure of periodically inverting the electric field. Tuning the frequency of the field inversions from 10 to 0.01 hertz, makes it possible to resolve selectively DNA's in the size range 15 to greater than 700 kilobase pairs.

808 citations


Cited by
More filters
Journal ArticleDOI
Eric S. Lander1, Lauren Linton1, Bruce W. Birren1, Chad Nusbaum1  +245 moreInstitutions (29)
15 Feb 2001-Nature
TL;DR: The results of an international collaboration to produce and make freely available a draft sequence of the human genome are reported and an initial analysis is presented, describing some of the insights that can be gleaned from the sequence.
Abstract: The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

22,269 citations

Journal ArticleDOI
TL;DR: The AFLP technique provides a novel and very powerful DNA fingerprinting technique for DNAs of any origin or complexity that allows the specific co-amplification of high numbers of restriction fragments.
Abstract: A novel DNA fingerprinting technique called AFLP is described. The AFLP technique is based on the selective PCR amplification of restriction fragments from a total digest of genomic DNA. The technique involves three steps: (i) restriction of the DNA and ligation of oligonucleotide adapters, (ii) selective amplification of sets of restriction fragments, and (iii) gel analysis of the amplified fragments. PCR amplification of restriction fragments is achieved by using the adapter and restriction site sequence as target sites for primer annealing. The selective amplification is achieved by the use of primers that extend into the restriction fragments, amplifying only those fragments in which the primer extensions match the nucleotides flanking the restriction sites. Using this method, sets of restriction fragments may be visualized by PCR without knowledge of nucleotide sequence. The method allows the specific co-amplification of high numbers of restriction fragments. The number of fragments that can be analyzed simultaneously, however, is dependent on the resolution of the detection system. Typically 50-100 restriction fragments are amplified and detected on denaturing polyacrylamide gels. The AFLP technique provides a novel and very powerful DNA fingerprinting technique for DNAs of any origin or complexity.

12,960 citations

Journal ArticleDOI
Adam Auton1, Gonçalo R. Abecasis2, David Altshuler3, Richard Durbin4  +514 moreInstitutions (90)
01 Oct 2015-Nature
TL;DR: The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations, and has reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-generation sequencing, deep exome sequencing, and dense microarray genotyping.
Abstract: The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies.

12,661 citations

Journal ArticleDOI
01 Dec 1994-Nature
TL;DR: The ob gene product may function as part of a signalling pathway from adipose tissue that acts to regulate the size of the body fat depot.
Abstract: The mechanisms that balance food intake and energy expenditure determine who will be obese and who will be lean. One of the molecules that regulates energy balance in the mouse is the obese (ob) gene. Mutation of ob results in profound obesity and type II diabetes as part of a syndrome that resembles morbid obesity in humans. The ob gene product may function as part of a signalling pathway from adipose tissue that acts to regulate the size of the body fat depot.

12,394 citations

Journal ArticleDOI
08 Oct 2009-Nature
TL;DR: This paper examined potential sources of missing heritability and proposed research strategies, including and extending beyond current genome-wide association approaches, to illuminate the genetics of complex diseases and enhance its potential to enable effective disease prevention or treatment.
Abstract: Genome-wide association studies have identified hundreds of genetic variants associated with complex human diseases and traits, and have provided valuable insights into their genetic architecture. Most variants identified so far confer relatively small increments in risk, and explain only a small proportion of familial clustering, leading many to question how the remaining, 'missing' heritability can be explained. Here we examine potential sources of missing heritability and propose research strategies, including and extending beyond current genome-wide association approaches, to illuminate the genetics of complex diseases and enhance its potential to enable effective disease prevention or treatment.

7,797 citations