scispace - formally typeset
Author

Mayukh Roy Chowdhury

Bio: Mayukh Roy Chowdhury is an academic researcher from Indian Institute of Technology Delhi. The author has contributed to research in topic(s): Energy consumption & Communications system. The author has an hindex of 3, co-authored 5 publication(s) receiving 26 citation(s).

Papers
More filters
Journal ArticleDOI
TL;DR: Performance studies indicate that compared to the state-of-the-art, the proposed technique is able to achieve impressive bandwidth saving for transmission of data over communication network without compromising faithful reconstruction of data at the receiver.
Abstract: Recent advances in electric metering infrastructure have given rise to the generation of gigantic chunks of data. Transmission of all of these data certainly poses a significant challenge in bandwidth and storage constrained Internet of Things (IoT), where smart meters act as sensors. In this work, a novel multivariate data compression scheme is proposed for smart metering IoT. The proposed algorithm exploits the cross correlation between different variables sensed by smart meters to reduce the dimension of data. Subsequently, sparsity in each of the decorrelated streams is utilized for temporal compression. To examine the quality of compression, the multivariate data is characterized using multivariate normal–autoregressive integrated moving average modeling before compression as well as after reconstruction of the compressed data. Our performance studies indicate that compared to the state-of-the-art, the proposed technique is able to achieve impressive bandwidth saving for transmission of data over communication network without compromising faithful reconstruction of data at the receiver. The proposed algorithm is tested in a real smart metering setup and its time complexity is also analyzed.

12 citations

Proceedings ArticleDOI
01 Feb 2018
TL;DR: It is demonstrated that temporal correlation of pollutant concentration can be exploited to select optimum sampling period of an energy-intensive sensor to reduce sensing energy consumption without losing much information.
Abstract: Air pollution monitoring systems with energy-intensive sensors cannot afford to sample frequently in order to maximize time between successive recharges. In this paper, we propose an energy-efficient machine learning based sensor duty-cycling method for a sensor hub receiving data from the air-pollution sensors. In particular, we demonstrate that temporal correlation of pollutant concentration can be exploited to select optimum sampling period of an energy-intensive sensor to reduce sensing energy consumption without losing much information. Support Vector Regression is used to predict the missing samples during the period sensor is turned off.

9 citations

Proceedings ArticleDOI
01 Jan 2020
TL;DR: The overall objective has been demonstrating the ability of beyond state of the art circuits and system design for IoT communications, wherein context specific intelligence is applied at the at the node.
Abstract: In a smart IoT system, multi-sensing at a field node is a typical scenario. The examples considered in this study are pollution monitoring and smart energy metering. In such applications, energy sustainability and communication and storage resource usage optimization are two of the key issues of interest. In this study, on one hand it is intended to develop indigenous beyond state of the art multi-sensing boards with the inherent smartness in energy replenishment and sensing/communication activities. On the other hand, smart data collection and processing at the end node (fog node or edge node) is of interest primarily from efficient communication bandwidth usage perspective. On the first exercise towards energy sustainable IoT sensing and communication board design, we have designed a prototype for a 5G capable environmental air pollution monitoring system. The system measures concentrations of NO2, ozone, CO and SO2 using semiconductor sensors. Further, the system gathers other environmental parameters like temperature, humidity, PM1, PM2.5 and PM10. The prototype is equipped with a GPS sub-system for accurate geo-tagging. The board communicates through Wi-Fi and NB-IoT. The board is also equipped with energy harvesting power management, and is powered through solar energy and battery backup. On the second exercise, a working model of a smart IoT device with a data pruning subsystem is designed, where a smart energy meter is considered for an example application. As a proof of concept we plan to demonstrate data compression at the edge to save bandwidth required for data transmission to a remote cloud. At each smart meter, sparsity of data is exploited to devise an adaptive data reduction algorithm using compressive sampling technique such that the bandwidth requirement for smart meter data transmission is reduced with minimum loss of information. The Smart Energy Meter is WiFi and NB-IoT enabled. This meter is capable of logging multiple energy consumption parameters. The overall objective has been demonstrating the ability of beyond state of the art circuits and system design for IoT communications, wherein context specific intelligence is applied at the at the node. The broad philosophy in this study can be readily extended to any chosen IoT application.

5 citations

Journal ArticleDOI
TL;DR: A novel delay-aware priority access classification (DPAC) based ACB is proposed, where the MTC devices having packets with lesser leftover delay budget are given higher priority in ACB.
Abstract: Massive Machine-type Communications (mMTC) is one of the principal features of the 5th Generation and beyond (5G+) mobile network services. Due to sparse but synchronous MTC nature, a large number of devices tend to access a base station simultaneously for transmitting data, leading to congestion. To accommodate a large number of simultaneous arrivals in mMTC, efficient congestion control techniques like access class barring (ACB) are incorporated in LTE-A random access. ACB introduces access delay which may not be acceptable in delay-constrained scenarios, such as, eHealth, self-driven vehicles, and smart grid applications. In such scenarios, MTC devices may be forced to drop packets that exceed their delay budget, leading to a decreased system throughput. To this end, in this paper a novel delay-aware priority access classification (DPAC) based ACB is proposed, where the MTC devices having packets with lesser leftover delay budget are given higher priority in ACB. A reinforcement learning (RL) aided framework, called DPAC-RL, is also proposed for online learning of DPAC model parameters. Simulation studies show that the proposed scheme increases successful preamble transmissions by up to $75 \\%$ while ensuring that the access delay is well within the delay budget.
Proceedings ArticleDOI
01 Jan 2020
TL;DR: A novel versatile algorithm for multivariate data pruning at the edge devices in smart grid IoT networks is presented via a two stage data reduction mechanism which first exploits the inter-variable correlation to cut down on the number of transmitted variables, followed by adaptive data compression in temporal domain using adaptive compressive sampling.
Abstract: With wide scale sensor deployments in smart grid IoT networks, there has been a manyfold increase in the variety and quantity of data generated in the network. In this work, the problem of data reduction in smart grid IoT network is addressed to enhance the resource utilization without hampering the required quality of service. A novel versatile algorithm for multivariate data pruning at the edge devices in smart grid IoT networks is presented. This is achieved via a two stage data reduction mechanism which first exploits the inter-variable correlation to cut down on the number of transmitted variables, followed by adaptive data compression in temporal domain using adaptive compressive sampling. It is shown that with the application of the proposed algorithm at the edge nodes, around 23% savings in bandwidth requirement can be achieved with minimum loss of information.

Cited by
More filters
01 Feb 2015
TL;DR: In this article, the authors illustrate the drivers behind current rises in the use of low-cost sensors for air pollution management in cities, whilst addressing the major challenges for their effective implementation.
Abstract: Ever growing populations in cities are associated with a major increase in road vehicles and air pollution. The overall high levels of urban air pollution have been shown to be of a significant risk to city dwellers. However, the impacts of very high but temporally and spatially restricted pollution, and thus exposure, are still poorly understood. Conventional approaches to air quality monitoring are based on networks of static and sparse measurement stations. However, these are prohibitively expensive to capture tempo-spatial heterogeneity and identify pollution hotspots, which is required for the development of robust real-time strategies for exposure control. Current progress in developing low-cost micro-scale sensing technology is radically changing the conventional approach to allow real-time information in a capillary form. But the question remains whether there is value in the less accurate data they generate. This article illustrates the drivers behind current rises in the use of low-cost sensors for air pollution management in cities, whilst addressing the major challenges for their effective implementation.

29 citations

Journal ArticleDOI
TL;DR: This article surveys the existing green sensing and communication approaches to realize sustainable IoT systems for various applications and presents a few case studies that aim to generate sensed traffic data intelligently as well as prune it efficiently without sacrificing the required service quality.
Abstract: With the advent of Internet of Things (IoT) devices, their reconfigurability, networking, task automation, and control ability have been a boost to the evolution of traditional industries such as health-care, agriculture, power, education, and transport. However, the quantum of data produced by the IoT devices poses serious challenges on its storage, communication, computation, security, scalability, and system’s energy sustainability. To address these challenges, the concept of green sensing and communication has gained importance. This article surveys the existing green sensing and communication approaches to realize sustainable IoT systems for various applications. Further, a few case studies are presented that aim to generate sensed traffic data intelligently as well as prune it efficiently without sacrificing the required service quality. Challenges associated with these green techniques, various open issues, and future research directions for improving the energy efficiency of the IoT systems are also discussed.

8 citations

Journal ArticleDOI
TL;DR: IoT data driven unique communication approaches and optimization techniques to reduce the data handling footprint, leading to communication bandwidth, cloud storage, and energy saving, without compromising the service quality are presented.
Abstract: Internet of Things (IoT) has gained tremendous popularity with the recent fast-paced technological advances in embedded programmable electronic and electro-mechanical systems, miniaturization, and their networking ability. IoT is expected to change the way of human activities by extensively networked monitoring, automation, and control. However, widespread application of IoT is associated with numerous challenges on communication and storage requirements, energy sustainability, and security. Also, IoT data traffic as well as the service quality requirements are application-specific. Through a few practical example cases, this article presents IoT data driven unique communication approaches and optimization techniques to reduce the data handling footprint, leading to communication bandwidth, cloud storage, and energy saving, without compromising the service quality. Subsequently, it discusses newer challenges that are needed to be tackled, to make the IoT applications practically viable for their wide-ranging adoption.

4 citations

Proceedings ArticleDOI
07 Oct 2020
TL;DR: This research work shows the reasons why lossless compression techniques are needed in NBIoT and LTE-M and goes through the challenges posed by the low bandwidth IoTs.
Abstract: In the recent years, Internet of things (IoT) has become an integral part of the modern digital ecosystem. It has the ability to handle the tasks smartly for many different situations. Therefore, it is one of the main technologies for autonomous systems. These IoTs deal with a lot of information. As the resources of the IoT are limited, data compression is an essential need. Some of the information transmitted over the IoTs cannot be compromised at all. Any loss of such sensitive data may cause serious consequences. Therefore, lossless data compression techniques are preferred for such data so that the integrity can be maintained. The low bandwidth IoTs are very popular in the recent times. They provide services over large coverage area with limited resources. These networks are known as low power wide area networks (LPWANs). In the 3GPP framework, there are some popular LPWANs such as narrowband IoT (NBIoT), and LTE machine-type communication (LTE-M). This article focuses on the lossless compression techniques employed in these popular LPWANs. This research work shows the reasons why lossless compression techniques are needed in NBIoT and LTE-M. It also goes through the challenges posed by the low bandwidth IoTs. Further, the recently used compression techniques for these low bandwidth IoTs are also discussed.

4 citations

Proceedings ArticleDOI
01 Sep 2020
TL;DR: The developed AAPMD system consumes 10-times less energy while using 5G NB-IoT communication module, which makes it a very competitive candidate for massive deployment in highly polluted metro cities like Delhi and Kolkata, in India.
Abstract: We have designed a 5G-capable environmental sensing network (ESN) node prototype, called Advanced Air Pollution Monitoring Device (AAPMD). The developed prototype system measures concentrations of NO 2 , Ozone, carbon monoxide, and sulphur dioxide using semiconductor sensors. Further, the system gathers other environmental parameters like temperature, humidity, PM 1 , PM 2 . 5 , and PM 10 . The prototype is equipped with a GPS sub-system for accurate geo-tagging. The board communicates through Wi-Fi and NB-IoT. AAPMD is also implemented with energy harvesting power management, and is powered through solar energy and battery backup. Compared to the conventional designs with Wi-Fi-based connectivity, the developed system consumes 10-times less energy while using 5G NB-IoT communication module, which makes it a very competitive candidate for massive deployment in highly polluted metro cities like Delhi and Kolkata, in India. The system can provide updated measurements of pollutant levels with controllable time granularity.

4 citations