scispace - formally typeset
Search or ask a question
Author

Md. Fuad Bahari

Bio: Md. Fuad Bahari is an academic researcher from Universiti Teknologi MARA. The author has contributed to research in topics: Electrical discharge machining & Ultrasonic machining. The author has an hindex of 1, co-authored 1 publications receiving 668 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors reviewed the research trends in electrical discharge machining on ultrasonic vibration, dry EDM machining with powder additives, EDM in water and modeling technique in predicting EDM performances.
Abstract: Electrical discharge machining (EDM) is one of the earliest non-traditional machining processes. EDM process is based on thermoelectric energy between the work piece and an electrode. A pulse discharge occurs in a small gap between the work piece and the electrode and removes the unwanted material from the parent metal through melting and vaporising. The electrode and the work piece must have electrical conductivity in order to generate the spark. There are various types of products which can be produced using EDM such as dies and moulds. Parts of aerospace, automotive industry and surgical components can be finished by EDM. This paper reviews the research trends in EDM on ultrasonic vibration, dry EDM machining, EDM with powder additives, EDM in water and modeling technique in predicting EDM performances.

785 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper surveys key advances in mechanical design and control of dynamic effects and nonlinearities, in the context of high-speed nanopositioning, as well as future challenges and research topics.
Abstract: Recent interest in high-speed scanning probe microscopy for high-throughput applications including video-rate atomic force microscopy and probe-based nanofabrication has sparked attention on the development of high-bandwidth flexure-guided nanopositioning systems (nanopositioners). Such nanopositioners are designed to move samples with sub-nanometer resolution with positioning bandwidth in the kilohertz range. State-of-the-art designs incorporate uniquely designed flexure mechanisms driven by compact and stiff piezoelectric actuators. This paper surveys key advances in mechanical design and control of dynamic effects and nonlinearities, in the context of high-speed nanopositioning. Future challenges and research topics are also discussed.

411 citations

Journal ArticleDOI
TL;DR: In this paper, the influence of EDM parameters on various aspects of the surface integrity of Ti6Al4V was explored by using scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive spectrograph (EDS), and hardness analysis.

386 citations

Journal ArticleDOI
TL;DR: In this article, the authors present an up-to-date review of progress and benefits of different routes for fabrication and machining of composites and conclude that polycrystalline tools and diamond-coated tools are best suitable for various conventional machining operations.
Abstract: Intrinsically smart, metal matrix composites (MMCs) are lightweight and high-performance materials having ever expanding industrial applications. The structural and the functional properties of these materials can be altered as per the industrial demands. The process technologies indulged in fabrication and machining of these materials attract the researchers and industrial community. Hybrid electric discharge machining is a promising and the most reliable nonconventional machining process for MMCs. It exhibits higher competence for machining complex shapes with greater accuracy. This paper presents an up-to-date review of progress and benefits of different routes for fabrication and machining of composites. It reports certain practical analysis and research findings including various issues on fabrication and machining of MMCs. It is concluded that polycrystalline tools and diamond-coated tools are best suitable for various conventional machining operations. High speed, small depth of cut and low feed ra...

251 citations

Journal ArticleDOI
TL;DR: In this paper, the authors developed a thermo-physical model for die-sinking electric discharge machining (EDM) process using finite element method (FEM) to predict the shape of crater cavity and the material removal rate (MRR).

213 citations

Journal ArticleDOI
TL;DR: The experimental result shows that GPR models have the advantage over other regressive models in terms of model accuracy and feature scaling and probabilistic variance, and the effectiveness of controlling optimization process to acquire more reliable optimum predictive solutions.
Abstract: The paper discusses the development of reliable multi-objective optimization based on Gaussian process regression (GPR) to optimize the high-speed wire-cut electrical discharge machining (WEDM-HS) process, considering mean current, on-time and off-time as input features and material remove rate (MRR) and Surface Roughness (SR) as output responses. In order to achieve an accurate estimation for the nonlinear electrical discharging and thermal erosion process, the multiple GPR models due to its simplicity and flexibility identify WEDM-HS process with measurement noise. Objective functions of predictive reliability multi-objectives optimization are built by probabilistic variance of predictive response used as empirical reliability measurement and responses of GPR models. Finally, the cluster class centers of Pareto front are the optional solutions to be chosen. Experiments on WEDM-HS (DK7732C2) are conducted to evaluate the proposed intelligent approach in terms of optimization process accuracy and reliability. The experimental result shows that GPR models have the advantage over other regressive models in terms of model accuracy and feature scaling and probabilistic variance. Given the regulable coefficient parameters, the experimental optimization and optional solutions show the effectiveness of controlling optimization process to acquire more reliable optimum predictive solutions.

209 citations