scispace - formally typeset
Search or ask a question
Author

Md. Jashim Uddin

Bio: Md. Jashim Uddin is an academic researcher from American International University-Bangladesh. The author has contributed to research in topics: Boundary layer & Nusselt number. The author has an hindex of 25, co-authored 80 publications receiving 1658 citations. Previous affiliations of Md. Jashim Uddin include International Islamic University, Chittagong & Universiti Sains Malaysia.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the effects of the emerging thermophysical parameters; namely, stretching/shrinking, velocity slip, magnetic field, convective heat transfer and buoyancy ratio parameters, on the dimensionless velocity, temperature and concentration (nanoparticle fraction) are depicted graphically and interpreted at length.

114 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of Stefan blowing and the velocity, thermal and solutal slips on bioconvection nanofluid flow over a horizontal moving plate in the presence of passively controlled boundary conditions are numerically investigated.

102 citations

Journal ArticleDOI
TL;DR: In this article, the effects of the controlling parameters (namely, stretching/shrinking, velocity slip, thermal slip, mass slip, Darcy number, radiation conduction, buoyancy ratio parameter, and Lewis number) on the dimensionless velocity, temperature, nanoparticle volume fraction, velocity gradient, temperature gradient, and nanoparticle fraction gradient are shown in graphi...
Abstract: Steady two-dimensional laminar mixed convective boundary-layer slip nanofluid flow in a Darcian porous medium due to a stretching/shrinking sheet is studied theoretically and numerically. A thermal radiative effect is incorporated in the model. The governing transport, partial differential equations, along with the boundary conditions, are transformed into a dimensionless form and then, via a linear group of transformation, a system of coupled similarity differential equations is derived. The transformed equations are solved numerically using the Runge–Kutta–Fehlberg fourth–fifth-order numerical quadrature method from Maple symbolic software. The effects of the controlling parameters (namely, stretching/shrinking, velocity slip, thermal slip, mass slip, Darcy number, radiation conduction, buoyancy ratio parameter, and Lewis number) on the dimensionless velocity, temperature, nanoparticle volume fraction, velocity gradient, temperature gradient, and nanoparticle volume fraction gradient are shown in graphi...

97 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated combined heat and mass transfer by mixed magneto-convective flow of an electrically conducting flow along a moving radiating vertical flat plate with hydrodynamic slip and thermal convective boundary conditions.
Abstract: This paper investigates combined heat and mass transfer by mixed magneto-convective flow of an electrically conducting flow along a moving radiating vertical flat plate with hydrodynamic slip and thermal convective boundary conditions. The governing transport equations are converted into a system of coupled nonlinear ordinary differential equations with prescribed boundary conditions using similarity variables developed by Lie group theory. The transformed nondimensional boundary value problem is then solved numerically with MAPLE13 quadrature. Excellent correlation with previous nonmagnetic, no-slip studies is achieved. Surface shear stress function and local Nusselt number (heat transfer gradient at the wall) are increased with Richardson number, whereas local Sherwood number is found to initially decrease then subsequently increase. The “thermally thick” scenario (Biot number > 0.1) is investigated and increasing Biot number is observed to enhance shear stress function (skin friction), local Nusselt number, and local Sherwood number. Increasing thermal radiation flux increases thermal boundary layer thickness as does increasing the magnetic field effect. Increasing hydrodynamic slip parameter reduces skin friction but enhances local Nusselt and Sherwood numbers. The study has applications in high-temperature polymeric synthesis and magnetic field flow control.

92 citations

Journal ArticleDOI
TL;DR: In this article, the effects of thermal radiation and convective surface boundary condition on steady boundary layer flow of a viscous incompressible electrically conducting fluid are considered, and a scaling group of transformation is applied to the governing equations and the boundary conditions.

67 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

01 Jun 2005

3,154 citations

Book ChapterDOI
01 Jan 1997
TL;DR: The boundary layer equations for plane, incompressible, and steady flow are described in this paper, where the boundary layer equation for plane incompressibility is defined in terms of boundary layers.
Abstract: The boundary layer equations for plane, incompressible, and steady flow are $$\matrix{ {u{{\partial u} \over {\partial x}} + v{{\partial u} \over {\partial y}} = - {1 \over \varrho }{{\partial p} \over {\partial x}} + v{{{\partial ^2}u} \over {\partial {y^2}}},} \cr {0 = {{\partial p} \over {\partial y}},} \cr {{{\partial u} \over {\partial x}} + {{\partial v} \over {\partial y}} = 0.} \cr }$$

2,598 citations

Book ChapterDOI
01 Jan 1997
TL;DR: This chapter introduces the finite element method (FEM) as a tool for solution of classical electromagnetic problems and discusses the main points in the application to electromagnetic design, including formulation and implementation.
Abstract: This chapter introduces the finite element method (FEM) as a tool for solution of classical electromagnetic problems. Although we discuss the main points in the application of the finite element method to electromagnetic design, including formulation and implementation, those who seek deeper understanding of the finite element method should consult some of the works listed in the bibliography section.

1,820 citations

Book ChapterDOI
28 Jan 2005
TL;DR: The Q12-40 density: ρ ((kg/m) specific heat: Cp (J/kg ·K) dynamic viscosity: ν ≡ μ/ρ (m/s) thermal conductivity: k, (W/m ·K), thermal diffusivity: α, ≡ k/(ρ · Cp) (m /s) Prandtl number: Pr, ≡ ν/α (−−) volumetric compressibility: β, (1/K).
Abstract: Geometry: shape, size, aspect ratio and orientation Flow Type: forced, natural, laminar, turbulent, internal, external Boundary: isothermal (Tw = constant) or isoflux (q̇w = constant) Fluid Type: viscous oil, water, gases or liquid metals Properties: all properties determined at film temperature Tf = (Tw + T∞)/2 Note: ρ and ν ∝ 1/Patm ⇒ see Q12-40 density: ρ ((kg/m) specific heat: Cp (J/kg ·K) dynamic viscosity: μ, (N · s/m) kinematic viscosity: ν ≡ μ/ρ (m/s) thermal conductivity: k, (W/m ·K) thermal diffusivity: α, ≡ k/(ρ · Cp) (m/s) Prandtl number: Pr, ≡ ν/α (−−) volumetric compressibility: β, (1/K)

636 citations