scispace - formally typeset
Search or ask a question
Author

Md. Rafiqul Islam

Bio: Md. Rafiqul Islam is an academic researcher. The author has contributed to research in topics: Positron & Proton. The author has an hindex of 1, co-authored 4 publications receiving 8 citations.
Topics: Positron, Proton, Medicine, Imaging phantom, Physics

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper , a step-by-step analysis scheme was proposed for the extraction and 3D visualization of positron emitting radioisotopes and in turn for proton range monitoring and verification.
Abstract: Proton range monitoring and verification is important to enhance the effectiveness of treatment by ensuring that the correct dose is delivered to the correct location. Upon proton irradiation, different positron emitting radioisotopes are produced by the inelastic nuclear interactions of protons with the target elements. Recently, it was reported that the 16O(p,2p2n)13N reaction has a relatively low threshold energy, and it could be potentially used for proton range verification. In the present work, we have proposed an analysis scheme (i.e., algorithm) for the extraction and three-dimensional visualization of positron emitting radioisotopes. The proposed step-by-step analysis scheme was tested using our own experimentally obtained dynamic data from a positron emission mammography (PEM) system (our developed PEMGRAPH system). The experimental irradiation was performed using an azimuthally varying field (AVF) cyclotron with a 80 MeV monoenergetic pencil-like beam. The 3D visualization showed promising results for proton-induced radioisotope distribution. The proposed scheme and developed tools would be useful for the extraction and 3D visualization of positron emitting radioisotopes and in turn for proton range monitoring and verification.

7 citations

Journal ArticleDOI
TL;DR: In this article , a new algorithm has been proposed and applied on the scene images to extract Region of Interest (ROI). All the Bangla words are then separated from a sentence by analyzing and applying the Connected Component (CC) method along with bounding box technology.

1 citations

Journal ArticleDOI
TL;DR: In this article , the authors used a pinhole x-ray camera during irradiation with protons in list mode, and then after irradiation of annihilation radiations from the produced positrons, imaging of the generated positrons was conducted using the same pinhole camera in listmode.
Abstract: Objective. Prompt x-ray imaging using a low-energy x-ray camera is a promising method for observing a proton beam’s shape from outside the subject. Furthermore, imaging of positrons produced by nuclear reactions with protons is a possible method for observing the beam shape. However, it has not been possible to measure these two types of images with a single imaging system due to the limited imaging capability of existing systems. Imaging of both prompt x-rays and the distribution of positrons may compensate for the shortcomings of each method. Approach. We conducted imaging of the prompt x-ray using a pinhole x-ray camera during irradiation with protons in list mode. Then, after irradiation with protons, imaging of annihilation radiations from the produced positrons was conducted using the same pinhole x-ray camera in list mode. After this imaging, list-mode data were sorted to obtain prompt x-ray images and positron images. Main results. With the proposed procedure, we could measure both prompt x-ray images and induced positron images with a single irradiation by a proton beam. From the prompt x-ray images, ranges and widths of the proton beams could be estimated. The distributions of positrons were slightly wider than those of the prompt x-rays. From the time sequential positron images, we could derive the time activity curves of the produced positrons. Significance. Hybrid imaging of prompt x-rays and induced positrons using a pinhole x-ray camera was achieved. The proposed procedure would be useful for measuring prompt x-ray images during irradiation to estimate the beam structures as well as for measuring the induced positron images after irradiation to estimate the distributions and time activity curves of the induced positrons.
Journal ArticleDOI
TL;DR: In this article , the authors employed the Monte Carlo method and Spectral Analysis (SA) technique to investigate the feasibility of utilizing the 13N peak for proton range monitoring and verification in inhomogeneous targets.
Abstract: Proton irradiations are highly sensitive to spatial variations, mainly due to their high linear energy transfer (LET) and densely ionizing nature. In realistic clinical applications, the targets of ionizing radiation are inhomogeneous in terms of geometry and chemical composition (i.e., organs in the human body). One of the main methods for proton range monitoring is to utilize the production of proton induced positron emitting radionuclides; these could be measured precisely with positron emission tomography (PET) systems. One main positron emitting radionuclide that could be used for proton range monitoring and verification was found to be 13N that produces a peak close to the Bragg peak. In the present work, we have employed the Monte Carlo method and Spectral Analysis (SA) technique to investigate the feasibility of utilizing the 13N peak for proton range monitoring and verification in inhomogeneous targets. Two different phantom types, namely, (1) ordinary slab and (2) MIRD anthropomorphic phantoms, were used. We have found that the generated 13N peak in such highly inhomogeneous targets (ordinary slab and human phantom) is close to the actual Bragg peak, when irradiated by incident proton beam. The feasibility of using the SA technique to estimate the distribution of positron emitter was also investigated. The current findings and the developed tools in the present work would be helpful in proton range monitoring and verification in realistic clinical radiation therapy using proton beams.

Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper , a graphical user interface (GUI) bundled with a custom-made 3D OpenGL visualizer for PHITS MC package is presented, which can be used for verification of proton ranges in proton therapy.
Abstract: The Monte Carlo (MC) method is a powerful tool for modeling nuclear radiation interaction with matter. A variety of MC software packages has been developed, especially for applications in radiation therapy. Most widely used MC packages require users to write their own input scripts for their systems, which can be a time consuming and error prone process and requires extensive user experience. In the present work, we have developed a graphical user interface (GUI) bundled with a custom-made 3D OpenGL visualizer for PHITS MC package. The current version focuses on modeling proton induced positron emitting radioisotopes, which in turn can be used for verification of proton ranges in proton therapy. The developed GUI program does not require extensive user experience. The present open-source program is distributed under GPLv3 license that allows users to freely download, modify, recompile and redistribute the program.

2 citations

Journal ArticleDOI
TL;DR: This work has developed a graphical user interface (GUI) bundled with a custom-made 3D OpenGL visualizer for PHITS MC package that can be used for verification of proton ranges in proton therapy.
Abstract: Abstract The Monte Carlo (MC) method is a powerful tool for modeling nuclear radiation interaction with matter. A variety of MC software packages has been developed, especially for applications in radiation therapy. Most widely used MC packages require users to write their own input scripts for their systems, which can be a time consuming and error prone process and requires extensive user experience. In the present work, we have developed a graphical user interface (GUI) bundled with a custom-made 3D OpenGL visualizer for PHITS MC package. The current version focuses on modeling proton induced positron emitting radioisotopes, which in turn can be used for verification of proton ranges in proton therapy. The developed GUI program does not require extensive user experience. The present open-source program is distributed under GPLv3 license that allows users to freely download, modify, recompile and redistribute the program.

2 citations

Journal ArticleDOI
TL;DR: In this article , the authors used a pinhole x-ray camera during irradiation with protons in list mode, and then after irradiation of annihilation radiations from the produced positrons, imaging of the generated positrons was conducted using the same pinhole camera in listmode.
Abstract: Objective. Prompt x-ray imaging using a low-energy x-ray camera is a promising method for observing a proton beam’s shape from outside the subject. Furthermore, imaging of positrons produced by nuclear reactions with protons is a possible method for observing the beam shape. However, it has not been possible to measure these two types of images with a single imaging system due to the limited imaging capability of existing systems. Imaging of both prompt x-rays and the distribution of positrons may compensate for the shortcomings of each method. Approach. We conducted imaging of the prompt x-ray using a pinhole x-ray camera during irradiation with protons in list mode. Then, after irradiation with protons, imaging of annihilation radiations from the produced positrons was conducted using the same pinhole x-ray camera in list mode. After this imaging, list-mode data were sorted to obtain prompt x-ray images and positron images. Main results. With the proposed procedure, we could measure both prompt x-ray images and induced positron images with a single irradiation by a proton beam. From the prompt x-ray images, ranges and widths of the proton beams could be estimated. The distributions of positrons were slightly wider than those of the prompt x-rays. From the time sequential positron images, we could derive the time activity curves of the produced positrons. Significance. Hybrid imaging of prompt x-rays and induced positrons using a pinhole x-ray camera was achieved. The proposed procedure would be useful for measuring prompt x-ray images during irradiation to estimate the beam structures as well as for measuring the induced positron images after irradiation to estimate the distributions and time activity curves of the induced positrons.
Journal ArticleDOI
TL;DR: A novel recognition approach using a double attention mechanism is presented to realize the automatic recognition and information extraction from such images of tobacco retail licenses, outperforming most existing methods.
Abstract: Images of tobacco retail licenses have complex unstructured characteristics, which is an urgent technical problem in the robot process automation of tobacco marketing. In this paper, a novel recognition approach using a double attention mechanism is presented to realize the automatic recognition and information extraction from such images. First, we utilized a DenseNet network to extract the license information from the input tobacco retail license data. Second, bi-directional long short-term memory was used for coding and decoding using a continuous decoder integrating dual attention to realize the recognition and information extraction of tobacco retail license images without segmentation. Finally, several performance experiments were conducted using a largescale dataset of tobacco retail licenses. The experimental results show that the proposed approach achieves a correction accuracy of 98.36% on the ZY-LQ dataset, outperforming most existing methods.
Journal ArticleDOI
TL;DR: In this paper , the effectiveness of PBFT is highly dependent on the incident proton energy, source size, cell array size, buffer medium thickness layer, concentration and distribution of boron in the cell array.
Abstract: The present work introduced a framework to investigate the effectiveness of proton boron fusion therapy (PBFT) at the cellular level. The framework consisted of a cell array generator program coupled with PHITS Monte Carlo package with a dedicated terminal-based code editor that was developed in this work. The framework enabled users to model large cell arrays with normal, all boron, and random boron filled cytoplasm, to investigate the underlying mechanism of PBFT. It was found that alpha particles and neutrons could be produced in absence of boron mainly because of nuclear reaction induced by proton interaction with 16O, 12C and 14N nuclei. The effectiveness of PBFT is highly dependent on the incident proton energy, source size, cell array size, buffer medium thickness layer, concentration and distribution of boron in the cell array. To quantitatively assess the effectiveness of PBFT, of the total energy deposition by alpha particle for different cases were determined. The number of alpha particle hits in cell cytoplasm and nucleus for normal and 100 ppm boron were determined. The obtained results and the developed tools would be useful for future development of PBFT to objectively determine the effectiveness of this treatment modality.