scispace - formally typeset
Search or ask a question
Author

Md. Rifat Hassan

Bio: Md. Rifat Hassan is an academic researcher from Missouri University of Science and Technology. The author has contributed to research in topics: Magnetic field & Shear flow. The author has an hindex of 2, co-authored 2 publications receiving 27 citations.

Papers
More filters
Journal ArticleDOI
02 Mar 2021
TL;DR: In this paper, an MXene-graphene field effect transistor (FET) sensor for both influenza virus and 2019-nCoV sensing was developed and characterized, which combines the high chemical sensitivity of MXene and the continuity of large-area high-quality graphene to form an ultra-sensitive virus-sensing transduction material (VSTM).
Abstract: An MXene-graphene field-effect transistor (FET) sensor for both influenza virus and 2019-nCoV sensing was developed and characterized. The developed sensor combines the high chemical sensitivity of MXene and the continuity of large-area high-quality graphene to form an ultra-sensitive virus-sensing transduction material (VSTM). Through polymer linking, we are able to utilize antibody-antigen binding to achieve electrochemical signal transduction when viruses are deposited onto the VSTM surface. The MXene-graphene VSTM was integrated into a microfluidic channel that can directly receive viruses in solution. The developed sensor was tested with various concentrations of antigens from two viruses: inactivated influenza A (H1N1) HA virus ranging from 125 to 250,000 copies/mL and a recombinant 2019-nCoV spike protein ranging from 1 fg/mL to 10 pg/mL. The average response time was about ∼50 ms, which is significantly faster than the existing real-time reverse transcription-polymerase chain reaction method (>3 h). The low limit of detection (125 copies/mL for the influenza virus and 1 fg/mL for the recombinant 2019-nCoV spike protein) has demonstrated the sensitivity of the MXene-graphene VSTM on the FET platform to virus sensing. Especially, the high signal-to-viral load ratio (∼10% change in source-drain current and gate voltage) also demonstrates the ultra-sensitivity of the developed MXene-graphene FET sensor. In addition, the specificity of the sensor was also demonstrated by depositing the inactivated influenza A (H1N1) HA virus and the recombinant 2019-nCoV spike protein onto microfluidic channels with opposite antibodies, producing signal differences that are about 10 times lower. Thus, we have successfully fabricated a relatively low-cost, ultrasensitive, fast-responding, and specific inactivated influenza A (H1N1) and 2019-nCoV sensor with the MXene-graphene VSTM.

78 citations

Journal ArticleDOI
TL;DR: This work reports the observation of lateral migration of ferrofluid droplets under the combined action of a uniform magnetic field and a pressure-driven flow in a microchannel and experimentally studies the effects of field strength and direction, and interfacial tension, and uses analytical and numerical modeling to understand the lateral migration mechanism.
Abstract: Manipulation of droplets based on physical properties (e.g., size, interfacial tension, electrical, and mechanical properties) is a critical step in droplet microfluidics. Manipulations based on magnetic fields have several benefits compared to other active methods. While traditional magnetic manipulations require spatially inhomogeneous fields to apply forces, the fast spatial decay of the magnetic field strength from the source makes these techniques difficult to scale up. In this work, we report the observation of lateral migration of ferrofluid (or magnetic) droplets under the combined action of a uniform magnetic field and a pressure-driven flow in a microchannel. While the uniform magnetic field exerts negligible net force on the droplet, the Maxwell stresses deform the droplet to achieve elongated shapes and modulate the orientation relative to the fluid flow. Hydrodynamic interactions between the droplets and the channel walls result in a directional lateral migration. We experimentally study the effects of field strength and direction, and interfacial tension, and use analytical and numerical modeling to understand the lateral migration mechanism.

20 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A systematic review and meta-analysis of commercially available rapid diagnostic tests (Ag-RDTs) for SARS-CoV-2 up until 30 April 2021 was conducted in this paper.
Abstract: Background SARS-CoV-2 antigen rapid diagnostic tests (Ag-RDTs) are increasingly being integrated in testing strategies around the world. Studies of the Ag-RDTs have shown variable performance. In this systematic review and meta-analysis, we assessed the clinical accuracy (sensitivity and specificity) of commercially available Ag-RDTs. Methods and findings We registered the review on PROSPERO (registration number: CRD42020225140). We systematically searched multiple databases (PubMed, Web of Science Core Collection, medRvix, bioRvix, and FIND) for publications evaluating the accuracy of Ag-RDTs for SARS-CoV-2 up until 30 April 2021. Descriptive analyses of all studies were performed, and when more than 4 studies were available, a random-effects meta-analysis was used to estimate pooled sensitivity and specificity in comparison to reverse transcription polymerase chain reaction (RT-PCR) testing. We assessed heterogeneity by subgroup analyses, and rated study quality and risk of bias using the QUADAS-2 assessment tool. From a total of 14,254 articles, we included 133 analytical and clinical studies resulting in 214 clinical accuracy datasets with 112,323 samples. Across all meta-analyzed samples, the pooled Ag-RDT sensitivity and specificity were 71.2% (95% CI 68.2% to 74.0%) and 98.9% (95% CI 98.6% to 99.1%), respectively. Sensitivity increased to 76.3% (95% CI 73.1% to 79.2%) if analysis was restricted to studies that followed the Ag-RDT manufacturers’ instructions. LumiraDx showed the highest sensitivity, with 88.2% (95% CI 59.0% to 97.5%). Of instrument-free Ag-RDTs, Standard Q nasal performed best, with 80.2% sensitivity (95% CI 70.3% to 87.4%). Across all Ag-RDTs, sensitivity was markedly better on samples with lower RT-PCR cycle threshold (Ct) values, i.e., <20 (96.5%, 95% CI 92.6% to 98.4%) and <25 (95.8%, 95% CI 92.3% to 97.8%), in comparison to those with Ct ≥ 25 (50.7%, 95% CI 35.6% to 65.8%) and ≥30 (20.9%, 95% CI 12.5% to 32.8%). Testing in the first week from symptom onset resulted in substantially higher sensitivity (83.8%, 95% CI 76.3% to 89.2%) compared to testing after 1 week (61.5%, 95% CI 52.2% to 70.0%). The best Ag-RDT sensitivity was found with anterior nasal sampling (75.5%, 95% CI 70.4% to 79.9%), in comparison to other sample types (e.g., nasopharyngeal, 71.6%, 95% CI 68.1% to 74.9%), although CIs were overlapping. Concerns of bias were raised across all datasets, and financial support from the manufacturer was reported in 24.1% of datasets. Our analysis was limited by the included studies’ heterogeneity in design and reporting. Conclusions In this study we found that Ag-RDTs detect the vast majority of SARS-CoV-2-infected persons within the first week of symptom onset and those with high viral load. Thus, they can have high utility for diagnostic purposes in the early phase of disease, making them a valuable tool to fight the spread of SARS-CoV-2. Standardization in conduct and reporting of clinical accuracy studies would improve comparability and use of data.

181 citations

Posted ContentDOI
01 Mar 2021-medRxiv
TL;DR: In this article, a systematic review and meta-analysis of commercially available rapid diagnostic tests (Ag-RDTs) is presented, where the clinical accuracy (sensitivity and specificity) of these tests are assessed.
Abstract: Background SARS-CoV-2 antigen rapid diagnostic tests (Ag-RDTs) are increasingly being integrated in testing strategies around the world. Studies of the Ag-RDTs have shown variable performance. In this systematic review and meta-analysis, we assessed the clinical accuracy (sensitivity and specificity) of commercially available Ag-RDTs. Methods We registered the review on PROSPERO (Registration number: CRD42020225140). We systematically searched multiple databases (PubMed, Web of Science Core Collection, medRvix and bioRvix, FINDdx) for publications up until December 11th, 2020. Descriptive analyses of all studies were performed and when more than four studies were available, a random-effects meta-analysis was used to estimate pooled sensitivity and specificity in comparison to reverse transcriptase polymerase chain reaction testing. We assessed heterogeneity by subgroup analyses ((1) performed con-form with manufacturer’s instructions for use (IFU) or not, (2) symptomatic vs. asymptomatic, (3) duration of symptoms less than seven days vs. more than seven days, (4) Ct-value Results From a total of 11,715 articles, we extracted 98 analytical and clinical data sets. 74 clinical accuracy data sets were evaluated that included 31,202 samples. Across all meta-analyzed samples, the pooled Ag-RDT sensitivity was 73.8% (CI 68.6 to 78.5). If analysis was restricted to studies that followed the Ag-RDT manufacturers’ instructions using fresh upper respiratory swab samples, the sensitivity increased to 79.1% (95%CI 75.0 to 82.8). The SD Biosensor Standard Q and Abbott Panbio showed the highest sensitivity with 81.7% and 72.7%, respectively. The best Ag-RDT performance was found with nasopharyngeal sampling (77.3%, CI 72.0 to 81.9) in comparison to other sample types (e.g., anterior nasal or mid turbinate 63.5%, CI 49.5 to 75.5). Testing in the first week from symptom onset resulted in higher sensitivity (87.5%, CI 86.0 to 89.1) compared to testing after one week (64.1%, CI 54.4 to 73.8). The tests performed markedly better on samples with lower Ct-values, i.e., Conclusion As Ag-RDTs detect most cases within the first week of symptom onset and those with high viral load, they can have high utility for screening purposes in the early phase of disease, and thus can be a valuable tool to fight the spread of SARS-CoV-2. Standardization of conduct and reporting of clinical accuracy studies would improve comparability and use of data. Summary In this living systematic review we analyzed 98 data sets for performance of SARS-CoV-2 Ag-RDTs compared to RT-PCR. Best-performing tests achieved a sensitivity of 81.7%. Highest sensitivity was found in patients within seven days of symptom onset when NP swabs were utilized.

166 citations

Journal ArticleDOI
01 Mar 2020-Small
TL;DR: Recent advances in microfluidic-based methods for the synthesis of droplets, vesicles, and artificial cells are summarized and the current challenges and future trends are discussed.
Abstract: Fabrication of artificial biomimetic materials has attracted abundant attention. As one of the subcategories of biomimetic materials, artificial cells are highly significant for multiple disciplines and their synthesis has been intensively pursued. In order to manufacture robust "alive" artificial cells with high throughput, easy operation, and precise control, flexible microfluidic techniques are widely utilized. Herein, recent advances in microfluidic-based methods for the synthesis of droplets, vesicles, and artificial cells are summarized. First, the advances of droplet fabrication and manipulation on the T-junction, flow-focusing, and coflowing microfluidic devices are discussed. Then, the formation of unicompartmental and multicompartmental vesicles based on microfluidics are summarized. Furthermore, the engineering of droplet-based and vesicle-based artificial cells by microfluidics is also reviewed. Moreover, the artificial cells applied for imitating cell behavior and acting as bioreactors for synthetic biology are highlighted. Finally, the current challenges and future trends in microfluidic-based artificial cells are discussed. This review should be helpful for researchers in the fields of microfluidics, biomaterial fabrication, and synthetic biology.

87 citations

DOI
22 Nov 2021
TL;DR: In this article, the development of integrated circuits based on 2D layered materials is examined and a roadmap for the future development is proposed to address the key challenges that need to be addressed to deliver highly scaled circuits.
Abstract: Two-dimensional (2D) materials could potentially be used to develop advanced monolithic integrated circuits. However, despite impressive demonstrations of single devices and simple circuits—in some cases with performance superior to those of silicon-based circuits—reports on the fabrication of integrated circuits using 2D materials are limited and the creation of large-scale circuits remains in its infancy. Here we examine the development of integrated circuits based on 2D layered materials. We assess the most advanced circuits fabricated so far and explore the key challenges that need to be addressed to deliver highly scaled circuits. We also propose a roadmap for the future development of integrated circuits based on 2D layered materials. This Perspective examines the development of integrated circuits based on layered two-dimensional materials, exploring where they are likely to first find commercial use and considers the challenges than need to be addressed to create highly scaled circuits.

82 citations

Journal ArticleDOI
TL;DR: In this article, an electrochemical sensor based on a molecularly imprinted polymer synthetic receptor for the quantitative detection of SARS-CoV-2 spike protein subunit S1 (ncovS1), by harnessing the covalent interaction between 1,2-diols of the highly glycosylated protein and the boronic acid group of 3-aminophenylboronic acid (APBA), was presented.
Abstract: The continued spread of the coronavirus disease and prevalence of the global pandemic is exacerbated by the increase in the number of asymptomatic individuals who unknowingly spread the SARS-CoV-2 virus. Although remarkable progress is being achieved at curtailing further rampage of the disease, there is still the demand for simple and rapid diagnostic tools for early detection of the COVID-19 infection and the following isolation. We report the fabrication of an electrochemical sensor based on a molecularly imprinted polymer synthetic receptor for the quantitative detection of SARS-CoV-2 spike protein subunit S1 (ncovS1), by harnessing the covalent interaction between 1,2-diols of the highly glycosylated protein and the boronic acid group of 3-aminophenylboronic acid (APBA). The sensor displays a satisfactory performance with a reaction time of 15 min and is capable of detecting ncovS1 both in phosphate buffered saline and patient’s nasopharyngeal samples with LOD values of 15 fM and 64 fM, respectively. Moreover, the sensor is compatible with portable potentiostats thus allowing on-site measurements thereby holding a great potential as a point-of-care testing platform for rapid and early diagnosis of COVID-19 patients.

62 citations