scispace - formally typeset
Search or ask a question
Author

Meenakshi A. Chellaiah

Bio: Meenakshi A. Chellaiah is an academic researcher from University of Maryland, Baltimore. The author has contributed to research in topics: Osteoclast & Osteopontin. The author has an hindex of 32, co-authored 41 publications receiving 3007 citations. Previous affiliations of Meenakshi A. Chellaiah include University of Maryland, College Park & Washington University in St. Louis.

Papers
More filters
Journal ArticleDOI
TL;DR: Recent observations have shown that CD44 intracellular domain (CD44-ICD) is related to the metastatic potential of breast cancer cells, however, the underlying mechanisms need further elucidation.
Abstract: CD44 is a cell surface adhesion receptor that is highly expressed in many cancers and regulates metastasis via recruitment of CD44 to the cell surface. Its interaction with appropriate extracellular matrix ligands promotes the migration and invasion processes involved in metastases. It was originally identified as a receptor for hyaluronan or hyaluronic acid and later to several other ligands including, osteopontin (OPN), collagens, and matrix metalloproteinases. CD44 has also been identified as a marker for stem cells of several types. Beside standard CD44 (sCD44), variant (vCD44) isoforms of CD44 have been shown to be created by alternate splicing of the mRNA in several cancer. Addition of new exons into the extracellular domain near the transmembrane of sCD44 increases the tendency for expressing larger size vCD44 isoforms. Expression of certain vCD44 isoforms was linked with progression and metastasis of cancer cells as well as patient prognosis. The expression of CD44 isoforms can be correlated with tumor subtypes and be a marker of cancer stem cells. CD44 cleavage, shedding, and elevated levels of soluble CD44 in the serum of patients is a marker of tumor burden and metastasis in several cancers including colon and gastric cancer. Recent observations have shown that CD44 intracellular domain (CD44-ICD) is related to the metastatic potential of breast cancer cells. However, the underlying mechanisms need further elucidation.

509 citations

Journal ArticleDOI
TL;DR: It is demonstrated that gelsolin deficiency blocks podosome assembly and αvβ3-stimulated signaling related to motility in gelolin-null mice, demonstrating the critical role of gelsolins in podosomes assembly, rapid cell movements, and signal transduction through the αv β3 integrin.
Abstract: Osteoclasts are unique cells that utilize podosomes instead of focal adhesions for matrix attachment and cytoskeletal remodeling during motility. We have shown that osteopontin (OP) binding to the αvβ3 integrin of osteoclast podosomes stimulated cytoskeletal reorganization and bone resorption by activating a heteromultimeric signaling complex that includes gelsolin, pp60c-src, and phosphatidylinositol 3′-kinase. Here we demonstrate that gelsolin deficiency blocks podosome assembly and αvβ3-stimulated signaling related to motility in gelsolin-null mice. Gelsolin-deficient osteoclasts were hypomotile due to retarded remodeling of the actin cytoskeleton. They failed to respond to the autocrine factor, OP, with stimulation of motility and bone resorption. Gelsolin deficiency was associated with normal skeletal development and endochondral bone growth. However, gelsolin-null mice had mildly abnormal epiphyseal structure, retained cartilage proteoglycans in metaphyseal trabeculae, and increased trabecular thickness. With age, the gelsolin-deficient mice expressed increased trabecular and cortical bone thickness producing mechanically stronger bones. These observations demonstrate the critical role of gelsolin in podosome assembly, rapid cell movements, and signal transduction through the αvβ3 integrin.

262 citations

Journal ArticleDOI
TL;DR: It is demonstrated that integrin-dependent activation of phosphoinositide synthesis, actin stress fiber formation, podosome reorganization for osteoclast motility, and bone resorption require Rho stimulation.

261 citations

Journal ArticleDOI
TL;DR: The role of OPN in osteoclast function and the requirement for OPN as an osteOClast autocrine factor during bone remodeling are demonstrated.
Abstract: Osteopontin (OPN) was expressed in murine wild-type osteoclasts, localized to the basolateral, clear zone, and ruffled border membranes, and deposited in the resorption pits during bone resorption. The lack of OPN secretion into the resorption bay of avian osteoclasts may be a component of their functional resorption deficiency in vitro. Osteoclasts deficient in OPN were hypomotile and exhibited decreased capacity for bone resorption in vitro. OPN stimulated CD44 expression on the osteoclast surface, and CD44 was shown to be required for osteoclast motility and bone resorption. Exogenous addition of OPN to OPN-/- osteoclasts increased the surface expression of CD44, and it rescued osteoclast motility due to activation of the alpha(v)beta(3) integrin. Exogenous OPN only partially restored bone resorption because addition of OPN failed to produce OPN secretion into resorption bays as seen in wild-type osteoclasts. As expected with these in vitro findings of osteoclast dysfunction, a bone phenotype, heretofore unappreciated, was characterized in OPN-deficient mice. Delayed bone resorption in metaphyseal trabeculae and diminished eroded perimeters despite an increase in osteoclast number were observed in histomorphometric measurements of tibiae isolated from OPN-deficient mice. The histomorphometric findings correlated with an increase in bone rigidity and moment of inertia revealed by load-to-failure testing of femurs. These findings demonstrate the role of OPN in osteoclast function and the requirement for OPN as an osteoclast autocrine factor during bone remodeling.

240 citations

Journal ArticleDOI
TL;DR: It is suggested that CD44 surface expression is an important event in the activation of MMP-9 and migration of prostate cancer cells and the various steps involved in the above mentioned signaling pathway and/or the molecules regulating the activated molecule are potential therapeutic target.
Abstract: The expression level of osteopontin correlates with the metastatic potential of several tumors. Osteopontin is a well-characterized ligand for the αvβ3 integrin. The present study was undertaken to elucidate the possible role of osteopontin/αvβ3 signaling in prostate cancer cell migration. We generated stable prostate cancer cell (PC3) lines that over-express osteopontin (PC3/OPN), mutant OPN in the integrin binding-site (PC3/RGDΔRGA), and null for OPN (PC3/SiRNA). The following observations were made in PC3/OPN cells as compared with PC3 cells: 1) an increase in multinucleated giant cells and RANKL expression; 2) an increase in CD44 surface expression, interaction of CD44/MMP-9 on the cell surface, MMP-9 activity in the conditioned medium, and cell migration; 3) western blot analysis of concentrated conditioned medium exhibited equal levels of MMP-9 protein in all PC3 cells. However, zymography analysis demonstrated that the levels of MMP-9 activity in the conditioned media reflect the CD44 surface expression pattern of the PC3 cell lines; 4) although MMP-9 and MMP-2 are secreted by PC3 cells, only the secretion of MMP-9 is regulated by OPN expression. A strong down regulation of the above-mentioned processes was observed in PC3/OPN (RGA) and PC3/SiRNA cells. PC3/OPN cells treated with bisphosphonate (BP) reproduce the down-regulation observed in PC3/OPN (RGA) and PC3/SiRNA cells. Rho signaling plays a crucial role in CD44 surface expression. BPs inhibits the mevalonate pathway, which in turn, prevents the prenylation of a number of small GTPases. Attenuation of Rho GTPase activation by BPs may have contributed to the down regulation of cell surface CD44/MMP-9 interaction, MMP-9 activation/secretion, and cell migration. Taken together, these observations suggest that CD44 surface expression is an important event in the activation of MMP-9 and migration of prostate cancer cells. The various steps involved in the above mentioned signaling pathway and/or the molecules regulating the activation of MMP-9 are potential therapeutic target.

144 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A novel wound model based on application of negative pressure and its effects for epidermal regeneration and immune cell behaviour is presented, which recapitulates the main features of epithelial wound regeneration, and can be applied for testing wound healing therapies and investigating underlying mechanisms.
Abstract: A large body of literature is available on wound healing in humans. Nonetheless, a standardized ex vivo wound model without disruption of the dermal compartment has not been put forward with compelling justification. Here, we present a novel wound model based on application of negative pressure and its effects for epidermal regeneration and immune cell behaviour. Importantly, the basement membrane remained intact after blister roof removal and keratinocytes were absent in the wounded area. Upon six days of culture, the wound was covered with one to three-cell thick K14+Ki67+ keratinocyte layers, indicating that proliferation and migration were involved in wound closure. After eight to twelve days, a multi-layered epidermis was formed expressing epidermal differentiation markers (K10, filaggrin, DSG-1, CDSN). Investigations about immune cell-specific manners revealed more T cells in the blister roof epidermis compared to normal epidermis. We identified several cell populations in blister roof epidermis and suction blister fluid that are absent in normal epidermis which correlated with their decrease in the dermis, indicating a dermal efflux upon negative pressure. Together, our model recapitulates the main features of epithelial wound regeneration, and can be applied for testing wound healing therapies and investigating underlying mechanisms.

6,378 citations

Journal ArticleDOI
01 Sep 2000-Science
TL;DR: Osteopetrotic mutants have provided a wealth of information about the genes that regulate the differentiation of osteoclasts and their capacity to resorb bone.
Abstract: Osteoporosis, a disease endemic in Western society, typically reflects an imbalance in skeletal turnover so that bone resorption exceeds bone formation. Bone resorption is the unique function of the osteoclast, and anti-osteoporosis therapy to date has targeted this cell. The osteoclast is a specialized macrophage polykaryon whose differentiation is principally regulated by macrophage colony-stimulating factor, RANK ligand, and osteoprotegerin. Reflecting integrin-mediated signals, the osteoclast develops a specialized cytoskeleton that permits it to establish an isolated microenvironment between itself and bone, wherein matrix degradation occurs by a process involving proton transport. Osteopetrotic mutants have provided a wealth of information about the genes that regulate the differentiation of osteoclasts and their capacity to resorb bone.

3,604 citations

Journal ArticleDOI
TL;DR: Clinical developments emphasize the need to identify how integrin antagonists influence the tumour and its microenvironment.
Abstract: The integrin family of cell adhesion receptors regulates a diverse array of cellular functions crucial to the initiation, progression and metastasis of solid tumours. The importance of integrins in several cell types that affect tumour progression has made them an appealing target for cancer therapy. Integrin antagonists, including the alphavbeta3 and alphavbeta5 inhibitor cilengitide, have shown encouraging activity in Phase II clinical trials and cilengitide is currently being tested in a Phase III trial in patients with glioblastoma. These exciting clinical developments emphasize the need to identify how integrin antagonists influence the tumour and its microenvironment.

2,894 citations

Journal ArticleDOI
TL;DR: This chapter reviews the evidence implicating Src family kinases in specific receptor pathways and describes the mechanisms leading to their activation, the targets that interact with these kinases, and the biological events that they regulate.
Abstract: Src family protein tyrosine kinases are activated following engagement of many different classes of cellular receptors and participate in signaling pathways that control a diverse spectrum of receptor-induced biological activities. While several of these kinases have evolved to play distinct roles in specific receptor pathways, there is considerable redundancy in the functions of these kinases, both with respect to the receptor pathways that activate these kinases and the downstream effectors that mediate their biological activities. This chapter reviews the evidence implicating Src family kinases in specific receptor pathways and describes the mechanisms leading to their activation, the targets that interact with these kinases, and the biological events that they regulate.

2,455 citations

Journal ArticleDOI
TL;DR: The role and the molecular mechanism of action of regulatory molecules, such as cytokines and hormones, in osteoclast and osteoblast birth and apoptosis are reviewed to review the evidence for the contribution of changes in bone cell birth or death to the pathogenesis of the most common forms of osteoporosis.
Abstract: The adult skeleton regenerates by temporary cellular structures that comprise teams of juxtaposed osteoclasts and osteoblasts and replace periodically old bone with new. A considerable body of evidence accumulated during the last decade has shown that the rate of genesis of these two highly specialized cell types, as well as the prevalence of their apoptosis, is essential for the maintenance of bone homeostasis; and that common metabolic bone disorders such as osteoporosis result largely from a derangement in the birth or death of these cells. The purpose of this article is 3-fold: 1) to review the role and the molecular mechanism of action of regulatory molecules, such as cytokines and hormones, in osteoclast and osteoblast birth and apoptosis; 2) to review the evidence for the contribution of changes in bone cell birth or death to the pathogenesis of the most common forms of osteoporosis; and 3) to highlight the implications of bone cell birth and death for a better understanding of the mechanism of action and efficacy of present and future pharmacotherapeutic agents for osteoporosis.

2,398 citations