scispace - formally typeset
Search or ask a question
Author

Meera Srivastava

Bio: Meera Srivastava is an academic researcher from Uniformed Services University of the Health Sciences. The author has contributed to research in topics: Cancer & Breast cancer. The author has an hindex of 30, co-authored 89 publications receiving 3349 citations. Previous affiliations of Meera Srivastava include Walter Reed National Military Medical Center & National Institutes of Health.


Papers
More filters
Journal ArticleDOI
TL;DR: Nucleolin is a major nucleolar protein of exponentially growing eukaryotic cells, which is directly involved in the regulation of ribosome biogenesis and maturation, and is a target for regulation by proteolysis, methylation, ADP‐ribosylation, and phosphorylation by CKII, cdc2, PKC‐ξ, cyclic AMP‐dependent protein kinase, and ecto‐protein kinase.
Abstract: Cells require optimum protein synthetic activity in order to support cell proliferation, maintain homeostatic and metabolic integrity, and repair damage. Since growth depends on protein synthesis through ribosome biogenesis, the control of biosynthesis of ribosomes is necessarily a key element for control of growth. Nucleolin is a major nucleolar protein of exponentially growing eukaryotic cells, which is directly involved in the regulation of ribosome biogenesis and maturation. The highly conserved nucleolin contains three major domains through which it controls the organization of nucleolar chromatin, packaging of pre-RNA, rDNA transcription, and ribosome assembly. Numerous reports have implicated the involvement of nucleolin either directly or indirectly in the regulation of cell proliferation and growth, cytokinesis, replication, embryogenesis, and nucleogenesis. Nucleolin, an RNA binding protein, is also an autoantigen, a transcriptional repressor, and a switch region targeting factor. In addition, n...

505 citations

Journal ArticleDOI
TL;DR: Elevated miR-155 contributes to the proinflammatory expression of IL-8 in CF lung epithelial cells by lowering SHIP1 expression and thereby activating the PI3K/Akt signaling pathway, which is suggested to play an important role in the activation ofIL-8-dependent inflammation in CF.

203 citations

Journal ArticleDOI
TL;DR: Analysis of the entire structure of synexin reveals possible insights into such diverse properties as voltage-sensitive calcium channel activity, ion selectivity, affinity for phospholipids, and membrane fusion.
Abstract: Synexin is a calcium-dependent membrane binding protein that not only fuses membranes but also acts as a voltage-dependent calcium channel. We have isolated and sequenced a set of overlapping cDNA clones for human synexin. The derived amino acid sequence of synexin reveals strong homology in the C-terminal domain with a previously identified class of calcium-dependent membrane binding proteins. These include endonexin II, lipocortin I, calpactin I heavy chain (p36), protein II, and calelectrin 67K. The Mr 51,000 synexin molecule can be divided into a unique, highly hydrophobic N-terminal domain of 167 amino acids and a conserved C-terminal region of 299 amino acids. The latter domain is composed of alternating hydrophobic and hydrophilic segments. Analysis of the entire structure reveals possible insights into such diverse properties as voltage-sensitive calcium channel activity, ion selectivity, affinity for phospholipids, and membrane fusion.

148 citations

Journal ArticleDOI
TL;DR: It is reported that human tumor cell proliferation and colony formation are markedly reduced when the wild-type ANX7 gene is transfected into two prostate tumor cell lines, LNCaP and DU145, and may play a role in prostate cancer progression.
Abstract: The ANX7 gene is located on human chromosome 10q21, a site long hypothesized to harbor a tumor suppressor gene(s) (TSG) associated with prostate and other cancers. To test whether ANX7 might be a candidate TSG, we examined the ANX7-dependent suppression of human tumor cell growth, stage-specific ANX7 expression in 301 prostate specimens on a prostate tissue microarray, and loss of heterozygosity (LOH) of microsatellite markers at or near the ANX7 locus. Here we report that human tumor cell proliferation and colony formation are markedly reduced when the wild-type ANX7 gene is transfected into two prostate tumor cell lines, LNCaP and DU145. Consistently, analysis of ANX7 protein expression in human prostate tumor microarrays reveals a significantly higher rate of loss of ANX7 expression in metastatic and local recurrences of hormone refractory prostate cancer as compared with primary tumors (P = 0.0001). Using four microsatellite markers at or near the ANX7 locus, and laser capture microdissected tumor cells, 35% of the 20 primary prostate tumors show LOH. The microsatellite marker closest to the ANX7 locus showed the highest rate of LOH, including one homozygous deletion. We conclude that the ANX7 gene exhibits many biological and genetic properties expected of a TSG and may play a role in prostate cancer progression.

134 citations

Journal ArticleDOI
TL;DR: Electrooptical recordings indicate that the anx7 (+/-) mutation has caused a change in the ability of inositol 1,4,5-trisphosphate (IP(3))-generating agonists to release intracellular calcium.
Abstract: The mammalian anx7 gene codes for a Ca2+-activated GTPase, which supports Ca2+/GTP-dependent secretion events and Ca2+ channel activities in vitro and in vivo. To test whether anx7 might be involved in Ca2+ signaling in secreting pancreatic β cells, we knocked out the anx7 gene in the mouse and tested the insulin-secretory properties of the β cells. The nullizygous anx7 (−/−) phenotype is lethal at embryonic day 10 because of cerebral hemorrhage. However, the heterozygous anx7 (+/−) mouse, although expressing only low levels of ANX7 protein, is viable and fertile. The anx7 (+/−) phenotype is associated with a substantial defect in insulin secretion, although the insulin content of the islets, is 8- to 10-fold higher in the mutants than in the normal littermate control. We infer from electrophysiological studies that both glucose-stimulated secretion and voltage-dependent Ca2+ channel functions are normal. However, electrooptical recordings indicate that the (+/−) mutation has caused a change in the ability of inositol 1,4,5-trisphosphate (IP3)-generating agonists to release intracellular calcium. The principle molecular consequence of lower anx7 expression is a profound reduction in IP3 receptor expression and function in pancreatic islets. The profound increase in islets, β cell number, and size may be a means of compensating for less efficient insulin secretion by individual defective pancreatic β cells. This is a direct demonstration of a connection between glucose-activated insulin secretion and Ca2+ signaling through IP3-sensitive Ca2+ stores.

125 citations


Cited by
More filters
01 Jan 2007
TL;DR: The present research attacked the Flavivirus infection through two mechanisms: Membrane Reorganization and the Compartmentalization and Assembly and Release of Particles from Flaviv virus-infected Cells and Host Resistance to Flaviviral Infection.
Abstract: FLAVIVIRUSES 1103 Background and Classification 1103 Structure and Physical Properties of the Virion 1104 Binding and Entry 1105 Genome Structure 1106 Translation and Proteolytic Processing 1107 Features of the Structural Proteins 1108 Features of the Nonstructural Proteins 1109 RNA Replication 1112 Membrane Reorganization and the Compartmentalization of Flavivirus Replication 1112 Assembly and Release of Particles from Flavivirus-infected Cells 1112 Host Resistance to Flavivirus Infection 1113

1,867 citations

Journal ArticleDOI
TL;DR: Although MRI, US, and x-ray CT are often listed as molecular imaging modalities, in truth, radionuclide and optical imaging are the most practical modalities for molecular imaging, because of their sensitivity and the specificity for target detection.
Abstract: In vivo medical imaging has made great progress due to advances in the engineering of imaging devices and developments in the chemistry of imaging probes Several modalities have been utilized for medical imaging, including X-ray radiography and computed tomography (x-ray CT), radionuclide imaging using single photons and positrons, magnetic resonance imaging (MRI), ultrasonography (US), and optical imaging In order to extract more information from imaging, “contrast agents” have been employed For example, organic iodine compounds have been used in X-ray radiography and computed tomography, superparamagnetic or paramagnetic metals have been used in MRI, and microbubbles have been used in ultrasonography Most of these, however, are non-targeted reagents Molecular imaging is widely considered the future for medical imaging Molecular imaging has been defined as the in vivo characterization and measurement of biologic process at the cellular and molecular level1, or more broadly as a technique to directly or indirectly monitor and record the spatio-temporal distribution of molecular or cellular processes for biochemical, biologic, diagnostic, or therapeutic application2 Molecular imaging is the logical next step in the evolution of medical imaging after anatomic imaging (eg x-rays) and functional imaging (eg MRI) In order to attain truly targeted imaging of specific molecules which exist in relatively low concentrations in living tissues, the imaging techniques must be highly sensitive Although MRI, US, and x-ray CT are often listed as molecular imaging modalities, in truth, radionuclide and optical imaging are the most practical modalities, for molecular imaging, because of their sensitivity and the specificity for target detection Radionuclide imaging, including gamma scintigraphy and positron emission tomography (PET), are highly sensitive, quantitative, and offer the potential for whole body scanning However, radionuclide imaging methods have the disadvantages of poor spatial and temporal resolution3 Additionally, they require radioactive compounds which have an intrinsically limited half life, and which expose the patient and practitioner to ionizing radiation and are therefore subject to a variety of stringent safety regulations which limit their repeated use4 Optical imaging, on the other hand, has comparable sensitivity to radionuclide imaging, and can be “targeted” if the emitting fluorophore is conjugated to a targeting ligand3 Optical imaging, by virtue of being “switchable”, can result in very high target to background ratios “Switchable” or activatable optical probes are unique in the field of molecular imaging since these agents can be turned on in specific environments but otherwise remain undetectable This improves the achievable target to background ratios, enabling the detection of small tumors against a dark background5,6 This advantage must be balanced against the lack of quantitation with optical imaging due to unpredictable light scattering and absorption, especially when the object of interest is deep within the tissue Visualization through the skin is limited to superficial tissues such as the breast7-9 or lymph nodes10,11 The fluorescence signal from the bright GFP-expressing tumors can be seen in the deep organ only in the nude mice 12,13 However, optical molecular imaging can also be employed during endoscopy14 or surgery 15,16

1,851 citations

Journal ArticleDOI
TL;DR: Although annexins lack signal sequences for secretion, some members of the family have also been identified extracellularly where they can act as receptors for serum proteases on the endothelium as well as inhibitors of neutrophil migration and blood coagulation.
Abstract: Annexins are Ca2+ and phospholipid binding proteins forming an evolutionary conserved multigene family with members of the family being expressed throughout animal and plant kingdoms. Structurally,...

1,830 citations

Journal ArticleDOI
TL;DR: The review should provide the basic elements needed to understand both earlier mitochondrial literature and current problems associated with mitochondrial transport of cations and hopefully will foster new interest in the molecular definition of mitochondrial cation channels and exchangers as well as their roles in cell physiology.
Abstract: This review provides a selective history of how studies of mitochondrial cation transport (K+, Na+, Ca2+) developed in relation to the major themes of research in bioenergetics. It then covers in some detail specific transport pathways for these cations, and it introduces and discusses open problems about their nature and physiological function, particularly in relation to volume regulation and Ca2+homeostasis. The review should provide the basic elements needed to understand both earlier mitochondrial literature and current problems associated with mitochondrial transport of cations and hopefully will foster new interest in the molecular definition of mitochondrial cation channels and exchangers as well as their roles in cell physiology.

1,506 citations