scispace - formally typeset
Search or ask a question
Author

Mehdi Derradji

Bio: Mehdi Derradji is an academic researcher from École Normale Supérieure. The author has contributed to research in topics: Curing (chemistry) & Thermal stability. The author has an hindex of 22, co-authored 100 publications receiving 1439 citations. Previous affiliations of Mehdi Derradji include Harbin Engineering University & Harbin Institute of Technology.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: In this review, recent advances in the preparation, modification, and emerging application of nanocellulose, especially cellulose nanocrystals (CNCs), are described and discussed based on the analysis of the latest investigations.
Abstract: Over the past few years, nanocellulose (NC), cellulose in the form of nanostructures, has been proved to be one of the most prominent green materials of modern times. NC materials have gained growing interests owing to their attractive and excellent characteristics such as abundance, high aspect ratio, better mechanical properties, renewability, and biocompatibility. The abundant hydroxyl functional groups allow a wide range of functionalizations via chemical reactions, leading to developing various materials with tunable features. In this review, recent advances in the preparation, modification, and emerging application of nanocellulose, especially cellulose nanocrystals (CNCs), are described and discussed based on the analysis of the latest investigations (particularly for the reports of the past 3 years). We start with a concise background of cellulose, its structural organization as well as the nomenclature of cellulose nanomaterials for beginners in this field. Then, different experimental procedures for the production of nanocelluloses, their properties, and functionalization approaches were elaborated. Furthermore, a number of recent and emerging uses of nanocellulose in nanocomposites, Pickering emulsifiers, wood adhesives, wastewater treatment, as well as in new evolving biomedical applications are presented. Finally, the challenges and opportunities of NC-based emerging materials are discussed.

461 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of fluctuating fiber volume on the curing behavior, mechanical, thermomechanical, and thermal properties of the resulted composites were studied through fourier transform infrared (FTIR), differential scanning calorimetry (DSC), dynamic mechanical analyzer (DMA), thermogravimetric analysis (TGA), and scanning electron microscope (SEM).

104 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reported the isolation of cellulose from giant reed through an ecofriendly multistep procedure including alkali treatment and totally chlorine free delignification, followed by acid hydrolysis to prepare micro-crystalline cellulose using different acidic solutions.
Abstract: This work reports the isolation of cellulose from giant reed through an ecofriendly multistep procedure including alkali treatment and totally chlorine free delignification, followed by acid hydrolysis to prepare microcrystalline cellulose using different acidic solutions (HCl, HNO3, H2SO4, HCl/HNO3 (2:1, v/v), and HCl/H2SO4 (2:1, v/v)). Several characterizations were performed in order to investigate the properties of each sample. FTIR results affirmed that the successive alkali treatment, totally chlorine free bleaching, and acid hydrolysis remove efficiently hemicellulose, lignin, and amorphous regions from the giant reed, and showed that the characteristic peaks of the prepared giant reed microcrystalline celluloses (GRMCC-HCl, GRMCC-HNO3, GRMCC-H2SO4, GRMCC-HCl/HNO3, and GRMCC-HCl/H2SO4) were similar to those of the commercial one. XRD measurements exhibited that microcrystalline cellulose produced from giant reed belong to cellulose I allomorph, with crystallinity index ranging from 73 to 80%. SEM micrographs revealed non-uniform micro sized rod-like shape morphology of GRMCC samples. The thermal analysis results displayed that the thermal decomposition of the obtained GRMCCs shifted to higher temperatures compared to the respective giant reed cellulose. This work opened a new pathway to prepare cellulose and microcrystalline cellulose from an abundant natural source using an ecofriendly process, and it could be expected to have applications in several areas.

94 citations

Journal ArticleDOI
TL;DR: In this article, a new type of composite based on phthalonitrile resin reinforced with silicon carbide (SiC) microparticles was prepared and the effect of the micro-SiC particles on the mechanical and thermal properties has been studied.

87 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A detailed review of the different types of retting processes, chemical and surface treatments and characterization techniques for natural fibers, and major findings from the literature are summarized.

534 citations

Journal ArticleDOI
TL;DR: It is concluded that nanotechnology offers a plethora of opportunities, by providing a novel and sustainable alternative in the food and agriculture sectors by providing the potential application of bio-synthesized and bio-inspired nanomaterial for sustainable development.

468 citations

Journal ArticleDOI
TL;DR: In this review, recent advances in the preparation, modification, and emerging application of nanocellulose, especially cellulose nanocrystals (CNCs), are described and discussed based on the analysis of the latest investigations.
Abstract: Over the past few years, nanocellulose (NC), cellulose in the form of nanostructures, has been proved to be one of the most prominent green materials of modern times. NC materials have gained growing interests owing to their attractive and excellent characteristics such as abundance, high aspect ratio, better mechanical properties, renewability, and biocompatibility. The abundant hydroxyl functional groups allow a wide range of functionalizations via chemical reactions, leading to developing various materials with tunable features. In this review, recent advances in the preparation, modification, and emerging application of nanocellulose, especially cellulose nanocrystals (CNCs), are described and discussed based on the analysis of the latest investigations (particularly for the reports of the past 3 years). We start with a concise background of cellulose, its structural organization as well as the nomenclature of cellulose nanomaterials for beginners in this field. Then, different experimental procedures for the production of nanocelluloses, their properties, and functionalization approaches were elaborated. Furthermore, a number of recent and emerging uses of nanocellulose in nanocomposites, Pickering emulsifiers, wood adhesives, wastewater treatment, as well as in new evolving biomedical applications are presented. Finally, the challenges and opportunities of NC-based emerging materials are discussed.

461 citations

Journal ArticleDOI
TL;DR: In this paper, the authors have reviewed the different sources of natural fibers, their properties, modification of natural fiber, the effect of treatments on natural fibers and their effective use as reinforcement for polymer composite materials.
Abstract: The increase in awareness of the damage caused by synthetic materials on the environment has led to the development of eco-friendly materials. The researchers have shown a lot of interest in developing such materials which can replace the synthetic materials. As a result, there is an increase in demand for commercial use of the natural fiber-based composites in recent years for various industrial sectors. Natural fibers are sustainable materials which are easily available in nature and have advantages like low-cost, lightweight, renewability, biodegradability and high specific properties. The sustainability of the natural fiber-based composite materials has led to upsurge its applications in various manufacturing sectors. In this paper, we have reviewed the different sources of natural fibers, their properties, modification of natural fibers, the effect of treatments on natural fibers, etc. We also summarize the major applications of natural fibers and their effective use as reinforcement for polymer composite materials.

441 citations

Journal ArticleDOI
TL;DR: This review discussed on the current knowledge on the structure and chemistry of isolation of lignin from different sources using various common methods, its characterization, properties and its applications.

178 citations