scispace - formally typeset
Search or ask a question
Author

Mehdi Zarei

Bio: Mehdi Zarei is an academic researcher from Shiraz University. The author has contributed to research in topics: Shoot & Soil water. The author has an hindex of 22, co-authored 110 publications receiving 1397 citations. Previous affiliations of Mehdi Zarei include University of Mazandaran & University of Hohenheim.
Topics: Shoot, Soil water, Diapir, Rhizobacteria, Aquifer


Papers
More filters
Journal ArticleDOI
TL;DR: It is revealed that further factors than HM soil concentration affect the AMF community at contaminated sites, and the soils' calcium carbonate equivalent and available P proved to be of importance, which illustrates that field studies on AMF distribution should also consider important environmental factors and their possible interactions.

158 citations

Journal ArticleDOI
TL;DR: Root colonization and diversity of arbuscular mycorrhizal fungi were analyzed in Veronica rechingeri growing in heavy metal and non-polluted soils of the Anguran Zn and Pb mining region (Iran) and phylogenetic analyses revealed seven different AMF sequence types all within the genus Glomus.

98 citations

Journal ArticleDOI
15 Jun 2009-Catena
TL;DR: In this paper, the authors identify the extent of colloidal stability of the soils and the forms of Fe and Al oxides in the soils contributing to their stability, while oxalate and pyrophosphate extractable Fe (Feox, Fep) and to some extent total Al (Alt) were among the different forms of oxides that act as aggregating agents.
Abstract: The stability of microaggregates in soils as opposed to its dispersion is a very important soil phenomenon that checks degradation arising from unguided tillage and soil erosion. Ten soils from southeastern Nigeria were sampled from their typical A and B horizons for the study. The aim was to identify the extent of colloidal stability of the soils and the forms of Fe and Al oxides in the soils contributing to their stability. The soils are mostly Ultisols and Inceptisols formed on sandstones and shale parent materials. The soils are low in soil basic cations including the soil organic carbon (SOC). The major clay mineral is kaolinite while the soil is acid in reaction. The various forms of soil Fe and Al oxides are high with the total forms of Fe and Al being most dominant and > dithionite extracted Fe and Al > oxalate extracted Fe and Al > pyrophosphate extracted Fe and Al. The water-dispersible clay and silt (WDC) and (WDSi) which are index of dispersion in most soils are low to medium thus reflecting in the low to medium dispersion ratio (DR). The clay flocculation index (CFI) and aggregated silt + clay (ASC) were moderate to high implying the high potential stability of the soils. Soil organic carbon did not seem to be contributing much to the stability of the microaggregates while oxalate and pyrophosphate extractable Fe (Feox, Fep) and to some extent total Al (Alt) were among the different forms of oxides that act as aggregating agents. We propose here that rather than SOC acting as a disaggregating agent in the soils, it might have acted in association with these oxides in a linkage or bridge such as C–P–OM–C to ensure stability of the soils.

75 citations

Journal ArticleDOI
TL;DR: In this paper, a study in the forested upper part of a granitic catchment (Barhalde) of the Black Forest in Germany was carried out, where the authors analyzed the pedogenesis of a distinct pattern of podzolized soils in the cool, perhumid Black Forest.
Abstract: Analysis of soil pattern, especially the pattern of depletion and accumulation zones, is a powerful tool to decipher pedogenic processes at the landscape scale. To clarify the pedogenesis of a distinct pattern of podzolized soils in the cool, perhumid Black Forest (Germany) we performed a study in the forested upper part of a granitic catchment (Barhalde). From detailed soil mapping we selected a typical catena of four pedons, which were analyzed for physical (bulk densities and particle-size distribution), chemical (pH, organic C, pyrophosphate, oxalate, dithionite, and total Al, Mn, Fe), and mineralogical (clay minerals) properties. Standard mass balance calculations were modified to include a two-component system with regard to parent material. Results showed a shift from two-mica granite to granite-porphyry downslope. Soil pattern revealed podzolized soils with thick E horizons and thin spodic horizons developed in the upslope areas, whereas in downslope soils the reverse was found (thick spodic B and thin E horizons). Soil chemical and mineralogical properties were linked to soil morphology in that contents of organic C, pedogenic oxides, hydroxy-interlayered vermiculites (HIV), and pH increased from eluvial to illuvial horizons as well as from up- to downslope soils. Mass balances of Fe and Al showed negative fluxes in upslope soils and positive fluxes in downslope soils during pedogenesis. We concluded from these results that a catenary eluvial-illuvial sequence (lateral podzolization) develops as a result of upslope mobilization followed by a (partially) lateral transport and subsequent immobilization in downslope zones, probably because the base-richer parent material built up a geochemical barrier.

70 citations

Journal ArticleDOI
TL;DR: Spore numbers were positively correlated with mycorrhizal colonization parameters, particularly with arbuscular abundance, and the variations of AM fungi propagules were better related to available than to total concentration of both metals.

62 citations


Cited by
More filters
Journal ArticleDOI

7,335 citations

01 Jan 1987
TL;DR: Eisma et al. as mentioned in this paper showed that the CEC can vary over 2 orders of magnitude for various types of, minerals and can vary one order of magnitude within one soil type.
Abstract: Positive ions that are available in soils absorb on grain surfaces. The total sum of cations that can be absorbed bij a soil/sediment at a certain PH is defined by the cation-exchange capacity (CEC, in meq g-1: mol equivalents per gram). The uptake of cations is an important parameter in agriculture and the larger the CEC, the more cations can be absorbed to the soil. The CEC depends highly on the pH of soil and sediments, where the CEC decreases with decreasing PH (increasing acidity). The exchange of ions on sediments occurs commonly fast on geological time scales, but the kinetics of adsorption in natural environments is still poorly understood. The strength of the bonding between the cations and the sediments varies from weak Van der Waals bondings (physical adsorption) to strong chemical bonds. The CEC is widely used for agricultural assessment because it is a measure of general soil fertility as well as an indicator of structural stability because CED is capabel of enhancing development of shrinkage cracks. The list below shows the CEC for different types of minerals. The data indicate that the CEC can vary over 2 orders of magnitude for various types of , minerals and can vary one order of magnitude within one soil type. Cation exchange capacity for different types of sediment (Eisma, 1992; Locher and de Bakker, 1990):

1,169 citations

Journal ArticleDOI
TL;DR: Halloysite clay minerals are ubiquitous in soils and weathered rocks where they occur in a variety of particle shapes and hydration states as discussed by the authors and diversity also characterizes their chemical composition, cation exchange capacity and potassium selectivity.
Abstract: Halloysite clay minerals are ubiquitous in soils and weathered rocks where they occur in a variety of particle shapes and hydration states. Diversity also characterizes their chemical composition, cation exchange capacity and potassium selectivity. This review summarizes the extensive but scattered literature on halloysite, from its natural occurrence, through its crystal structure, chemical and morphological diversity, to its reactivity toward organic compounds, ions and salts, involving the various methods of differentiating halloysite from kaolinite. No unique test seems to be ideal to distinguish these 1:1 clay minerals, especially in soils. The occurrence of 2:1 phyllosilicate contaminants appears, so far, to provide the best explanation for the high charge and potassium selectivity of halloysite. Yet, hydration properties of the mineral probably play a major role in ion sorption. Clear trends seem to relate particle morphology and structural Fe. However, future work is required to understand the possible mechanisms linking chemical, morphological, hydration and charge properties of halloysite.

1,156 citations

Journal Article
TL;DR: This work found significant variation in Arabidopsis thaliana ecotypes in accumulation and tolerance of Pb, and screened ethyl methanesulfonate-mutagenized M2 populations and identified several Pb-accumulating mutants.
Abstract: In addition to the often-cited advantages of using Arabidopsis thaliana as a model system in plant biological research (1), Arabidopsis has many additional characteristics that make it an attractive experimental organism for studying lea d (Pb) accumulation and tolerance in plants. These include its fortuitous familial relationship to many known metal hyperaccumulators (Brassicaceae), as well as similar Pbaccumulation patterns to most other plants. Using nutrient-agar plates, hydroponic culture, and Pb-contaminated soils as growth media, we found significant variation in Arabidopsis thaliana ecotypes in accumulation and tolerance of Pb. In addition, we have found that Pb accumulation is not obligatorily linked with Pb tolerance, suggesti ng that different genetic factors control these two processes. We also screened ethyl methanesulfonate-mutagenized M2 populations and identified several Pb-accumulating mutants. Current characterization of these mutants indicates that their phenotypes are likely due to alteration of general metal ion uptake or translocation processes since these mutants also accumulate many other metals in shoots. We expect that further characterization of the ecotypes and mutants will shed light on the basic genetic and physiological underpinnings of plant-based Pb remediation. 7. Aromatic nitroreduction of acifluorfen in soils, rhizospheres, and pure cultures of rhizobacteria. Zablotowicz, R. M., Locke, M. A., and Hoagland, R. E. Phytoremediation of soil and water contaminants. Washington, DC : American Chemical Society, 1997. p. 38-53. NAL Call #: QD1.A45-no.664 Abstract: Reduction of nitroaromatic compounds to their corresponding amino derivatives is one of several pathways in the degradation of nitroxenobiotics. Our studies with the nitrodiphenyl ether herbicide acifluorfen showed rapid metabolism to am inoacifluorfen followed by incorporation into unextractable soil components in both soil and rhizosphere suspensions. Aminoacifluorfen was formed more rapidly in rhizospheres compared to soil, which can be attributed to higher microbial populations, espec ially of Gram-negative bacteria. We identified several strains of Pseudomonas fluorescens that possess nitroreductase activity capable of converting acifluorfen to aminoacifluorfen. Factors affecting acifluorfen nitroreductase activity in pure cultures an d cell-free extracts, and other catabolic transformations of acifluorfen, ether bond cleavage, are discussed. Plant rhizospheres should be conducive for aromatic nitroreduction. Nitroreduction by rhizobacteria is an important catabolic pathway for the ini tial degradation of various nitroherbicides and other nitroaromatic compounds in soils under Reduction of nitroaromatic compounds to their corresponding amino derivatives is one of several pathways in the degradation of nitroxenobiotics. Our studies with the nitrodiphenyl ether herbicide acifluorfen showed rapid metabolism to am inoacifluorfen followed by incorporation into unextractable soil components in both soil and rhizosphere suspensions. Aminoacifluorfen was formed more rapidly in rhizospheres compared to soil, which can be attributed to higher microbial populations, espec ially of Gram-negative bacteria. We identified several strains of Pseudomonas fluorescens that possess nitroreductase activity capable of converting acifluorfen to aminoacifluorfen. Factors affecting acifluorfen nitroreductase activity in pure cultures an d cell-free extracts, and other catabolic transformations of acifluorfen, ether bond cleavage, are discussed. Plant rhizospheres should be conducive for aromatic nitroreduction. Nitroreduction by rhizobacteria is an important catabolic pathway for the ini tial degradation of various nitroherbicides and other nitroaromatic compounds in soils under phytoremediation management. 8. Ascorbate: a biomarker of herbicide stress in wetland plants. Lytle, T. F. and Lytle, J. S. Phytoremediation of soil and water contaminants. Washington, DC : American Chemical Society, 1997. p. 106-113. NAL Call #: QD1.A45-no.664 Abstract: In laboratory exposures of wetland plants to low herbicide levels (<0.1 micrograms/mL), some plants showed increased total ascorbic acid suggesting a stimulatory effect on ascorbic acid synthesis occurred; at higher herbicide conce ntrations (greater than or equal to 0.1 micrograms/mL) a notable decline in total ascorbic acid and increase in the oxidized form, dehydroascorbic acid occurred. Vigna luteola and Sesbania vesicaria were exposed for 7 and 21 days respectively to atrazine (0.05 to 1 microgram/mL); Spartina alterniflora 28 days at 0.1 micrograms/mL trifluralin; Hibiscus moscheutos 14 days at 0.1 and 1 microgram/mL metolachlor in fresh and brackish water. The greatest increase following low dosage occurred with S. alterniflo ra, increasing from <600 micrograms/g wet wt. total ascorbic acid to >1000 micrograms/g. Ascorbic acid may be a promising biomarker of estuarine plants exposed to herbicide runoff; stimulation of ascorbic acid synthesis may enable some wetland plant s used in phytoremediation to cope with low levels of these compounds. In laboratory exposures of wetland plants to low herbicide levels (<0.1 micrograms/mL), some plants showed increased total ascorbic acid suggesting a stimulatory effect on ascorbic acid synthesis occurred; at higher herbicide conce ntrations (greater than or equal to 0.1 micrograms/mL) a notable decline in total ascorbic acid and increase in the oxidized form, dehydroascorbic acid occurred. Vigna luteola and Sesbania vesicaria were exposed for 7 and 21 days respectively to atrazine (0.05 to 1 microgram/mL); Spartina alterniflora 28 days at 0.1 micrograms/mL trifluralin; Hibiscus moscheutos 14 days at 0.1 and 1 microgram/mL metolachlor in fresh and brackish water. The greatest increase following low dosage occurred with S. alterniflo ra, increasing from <600 micrograms/g wet wt. total ascorbic acid to >1000 micrograms/g. Ascorbic acid may be a promising biomarker of estuarine plants exposed to herbicide runoff; stimulation of ascorbic acid synthesis may enable some wetland plant s used in phytoremediation to cope with low levels of these compounds. 9. Atmospheric nitrogenous compounds and ozone--is NO(x) fixation by plants a possible solution. Wellburn, A. R. New phytol. 139: 1 pp. 5-9. (May 1998). NAL Call #: 450-N42 Descriptors: ozoneair-pollution nitrogen-dioxide nitric-oxide air-quality tolerancebioremediationacclimatizationnutrient-sources nutrient-uptake plantscultivarsgenetic-variation literature-reviews 10. Atrazine degradation in pesticide-contaminated soils: phytoremediation potential. Kruger, E. L., Anhalt, J. C., Sorenson, D., Nelson, B., Chouhy, A. L., Anderson, T. A., and Coats, J. R. Phytoremediation of soil and water contaminants. Washington, DC : American Chemical Society, 1997. p. 54-64. NAL Call #: QD1.A45-no. 664 Abstract: Studies were conducted in the laboratory to determine the fate of atrazine in pesticide-contaminated soils from agrochemical dealer sites. No significant differences in atrazine concentrations occurred in soils treated with atrazine i ndividually or combinations with metolachlor and trifluralin. In a screening study carried out in soils from four agrochemical dealer sites, rapid mineralization of atrazine occurred in three out of eight soils tested, with the greatest amount occurring i n Bravo rhizosphere soil (35% of the applied atrazine after 9 weeks). Suppression of atrazine mineralization in the Bravo rhizosphere soil did not occur with the addition of high concentrations of herbicide mixtures, but instead was increased. Plants had a positive impact on dissipation of aged Studies were conducted in the laboratory to determine the fate of atrazine in pesticide-contaminated soils from agrochemical dealer sites. No significant differences in atrazine concentrations occurred in soils treated with atrazine i ndividually or combinations with metolachlor and trifluralin. In a screening study carried out in soils from four agrochemical dealer sites, rapid mineralization of atrazine occurred in three out of eight soils tested, with the greatest amount occurring i n Bravo rhizosphere soil (35% of the applied atrazine after 9 weeks). Suppression of atrazine mineralization in the Bravo rhizosphere soil did not occur with the addition of high concentrations of herbicide mixtures, but instead was increased. Plants had a positive impact on dissipation of aged atrazine in soil, with significantly less atrazine extractable from Kochia-vegetated soils than from nonvegetated soils. 11. Bacterial inoculants of forage grasses that enhance degradation of 2-chlorobenzoic acid in soil. Siciliano, S. D. and Germida, J. J. Environ toxicol chem. 16: 6 pp. 1098-1104. (June 1997). NAL Call #: QH545.A1E58 Descriptors: polluted-soils bioremediationAbstract: Biological remediation of contaminated soil is an effective method of reducing risk to human and ecosystem health. Bacteria and plants might be used to enhance remediation of soil pollutants in situ. This study assessed the potential of bacteria (12 isolates), plants (16 forage grasses), and plant-bacteria associations (selected pairings) to remediate 2-chlorobenzoic acid (2CBA)-contaminated soil. Initially, grass viability was assessed in 2CBA-contaminated soil. Soil was contaminated wi th 2CBA, forage grasses were grown under growth chamber conditions for 42 or 60 d, and the 2CBA concentration in soil was determined by gas chromatography. Only five of 16 forage grasses grew in 2CBA-treated (816 mg/kg) soil. Growth of Bromus inermis had no effect on 2CBA concentration, whereas Agropyron intermedium, B. biebersteinii, A. riparum, and Elymus dauricus decreased 2CBA relative to nonplanted control soil by 32 to 42%. The 12 bacteria isolates were screened for their ability to promote the germ ination of the five grasses in 2CBA-contaminated soil. Inoculation of A. riparum with Pseudomonas aeruginos

1,049 citations

Book ChapterDOI
22 Apr 2012
TL;DR: In this article, the electromagnetic spectrum in Figure 1 illustrates the many different types of electromagnetic radiation, including gamma rays (γ-rays), X-rays, ultraviolet (UV) radiation, visible light, infrared (IR), microwaves, and radio waves.
Abstract: Spectroscopy is the study of matter interacting with electromagnetic radiation (e.g., light). The electromagnetic spectrum in Figure 1 illustrates the many different types of electromagnetic radiation, including gamma rays (γ-rays), X-rays, ultraviolet (UV) radiation, visible light, infrared (IR) radiation, microwaves, and radio waves. The frequency (ν) and wavelength (λ) ranges associated with each form of radiant energy are also indicated in Figure 1.

849 citations