scispace - formally typeset
Search or ask a question
Author

Mehmet Bayindir

Bio: Mehmet Bayindir is an academic researcher from Bilkent University. The author has contributed to research in topics: Photonic crystal & Yablonovite. The author has an hindex of 41, co-authored 136 publications receiving 5871 citations. Previous affiliations of Mehmet Bayindir include University of Hamburg & National Autonomous University of Mexico.


Papers
More filters
Journal ArticleDOI
TL;DR: Two complementary approaches towards realizing sophisticated functions are explored: on the single-fibre level, the integration of a multiplicity of functional components into one fibre, and on the multiple-fiber level,The assembly of large-scale two- and three-dimensional geometric constructs made of many fibres pave the way to multifunctional fabric systems.
Abstract: Virtually all electronic and optoelectronic devices necessitate a challenging assembly of conducting, semiconducting and insulating materials into specific geometries with low-scattering interfaces and microscopic feature dimensions. A variety of wafer-based processing approaches have been developed to address these requirements, which although successful are at the same time inherently restricted by the wafer size, its planar geometry and the complexity associated with sequential high-precision processing steps. In contrast, optical-fibre drawing from a macroscopic preformed rod is simpler and yields extended lengths of uniform fibres. Recently, a new family of fibres composed of conductors, semiconductors and insulators has emerged. These fibres share the basic device attributes of their traditional electronic and optoelectronic counterparts, yet are fabricated using conventional preform-based fibre-processing methods, yielding kilometres of functional fibre devices. Two complementary approaches towards realizing sophisticated functions are explored: on the single-fibre level, the integration of a multiplicity of functional components into one fibre, and on the multiple-fibre level, the assembly of large-scale two- and three-dimensional geometric constructs made of many fibres. When applied together these two approaches pave the way to multifunctional fabric systems.

456 citations

Journal ArticleDOI
TL;DR: The eigenmode splitting due to coupling of the evanescent defect modes in three-dimensional photonic crystals was well explained with a theory based on the classical wave analog of the tight-binding formalism in solid state physics.
Abstract: We have experimentally observed the eigenmode splitting due to coupling of the evanescent defect modes in three-dimensional photonic crystals. The splitting was well explained with a theory based on the classical wave analog of the tight-binding (TB) formalism in solid state physics. The experimental results were used to extract the TB parameters. A new type of waveguiding in a photonic crystal was demonstrated experimentally. A complete transmission was achieved throughout the entire waveguiding band. We have also obtained the dispersion relation for the waveguiding band of the coupled periodic defects from the transmission-phase measurements and from the TB calculations.

343 citations

Journal ArticleDOI
14 Oct 2004-Nature
TL;DR: It is demonstrated that the design, fabrication and characterization of fibres made of conducting, semiconducting and insulating materials in intimate contact and in a variety of geometries can be used to construct a tunable fibre photodetector comprising an amorphous semiconductor core contacted by metallic microwires, and surrounded by a cylindrical-shell resonant optical cavity.
Abstract: The combination of conductors, semiconductors and insulators with well-defined geometries and at prescribed length scales, while forming intimate interfaces, is essential in most functional electronic and optoelectronic devices. These are typically produced using a variety of elaborate wafer-based processes, which allow for small features, but are restricted to planar geometries and limited coverage area1,2,3. In contrast, the technique of fibre drawing from a preformed reel or tube is simpler and yields extended lengths of highly uniform fibres with well-controlled geometries and good optical transport characteristics4. So far, this technique has been restricted to particular materials5,6,7 and larger features8,9,10,11,12. Here we report on the design, fabrication and characterization of fibres made of conducting, semiconducting and insulating materials in intimate contact and in a variety of geometries. We demonstrate that this approach can be used to construct a tunable fibre photodetector comprising an amorphous semiconductor core contacted by metallic microwires, and surrounded by a cylindrical-shell resonant optical cavity. Such a fibre is sensitive to illumination along its entire length (tens of meters), thus forming a photodetecting element of dimensionality one. We also construct a grid of such fibres that can identify the location of an illumination point. The advantage of this type of photodetector array is that it needs a number of elements of only order N, in contrast to the conventional order N2 for detector arrays made of photodetecting elements of dimensionality zero.

228 citations

Journal ArticleDOI
TL;DR: A turn-on fluorescent method for rapid dopamine sensing which is based on monitoring the intrinsic fluorescence of in situ synthesized polydopamine nanoparticles, which is very promising for detection of dopamine related diseases.
Abstract: Dopamine is the principle biomarker for diseases such as schizophrenia, Huntington's, and Parkinson's, and the need is urgent for rapid and sensitive detection methods for diagnosis and monitoring of such diseases. In this Article, we report a turn-on fluorescent method for rapid dopamine sensing which is based on monitoring the intrinsic fluorescence of in situ synthesized polydopamine nanoparticles. The assay uses only a common base and an acid, NaOH and HCl to initiate and stop the polymerization reaction, respectively, which makes the assay extremely simple and low cost. First, we studied the in situ optical properties of polydopamine nanoparticles, for the first time, which formed under different alkaline conditions in order to determine optimum experimental parameters. Then, under optimized conditions we demonstrated high sensitivity (40 nM) and excellent selectivity of the assay. With its good analytical figures of merit, the described method is very promising for detection of dopamine related diseases.

208 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed and demonstrated two different methods to split electromagnetic waves in three-dimensional photonic crystals, and showed that the guided mode in a coupled-cavity waveguide can be splitted into the planar or planar waveguide channels without radiation losses.
Abstract: We proposed and demonstrated two different methods to split electromagnetic waves in three-dimensional photonic crystals. By measuring transmission spectra, it was shown that the guided mode in a coupled-cavity waveguide can be splitted into the coupled-cavity or planar waveguide channels without radiation losses. The flow of electromagnetic waves through output waveguide ports can also be controlled by introducing extra defects into the crystals. Our results may have an important role in the design of efficient power splitters in a photonic circuit.

207 citations


Cited by
More filters
01 Jan 2020
TL;DR: Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future.
Abstract: Summary Background Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described. Methods In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020. Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors. We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death. Findings 191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients). Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03–1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61–12·23; p Interpretation The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage. Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future. Funding Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.

4,408 citations

Proceedings Article
14 Jul 1996
TL;DR: The striking signature of Bose condensation was the sudden appearance of a bimodal velocity distribution below the critical temperature of ~2µK.
Abstract: Bose-Einstein condensation (BEC) has been observed in a dilute gas of sodium atoms. A Bose-Einstein condensate consists of a macroscopic population of the ground state of the system, and is a coherent state of matter. In an ideal gas, this phase transition is purely quantum-statistical. The study of BEC in weakly interacting systems which can be controlled and observed with precision holds the promise of revealing new macroscopic quantum phenomena that can be understood from first principles.

3,530 citations

Journal ArticleDOI
TL;DR: Topological photonics is a rapidly emerging field of research in which geometrical and topological ideas are exploited to design and control the behavior of light as mentioned in this paper, which holds great promise for applications.
Abstract: Topological photonics is a rapidly emerging field of research in which geometrical and topological ideas are exploited to design and control the behavior of light. Drawing inspiration from the discovery of the quantum Hall effects and topological insulators in condensed matter, recent advances have shown how to engineer analogous effects also for photons, leading to remarkable phenomena such as the robust unidirectional propagation of light, which hold great promise for applications. Thanks to the flexibility and diversity of photonics systems, this field is also opening up new opportunities to realize exotic topological models and to probe and exploit topological effects in new ways. This article reviews experimental and theoretical developments in topological photonics across a wide range of experimental platforms, including photonic crystals, waveguides, metamaterials, cavities, optomechanics, silicon photonics, and circuit QED. A discussion of how changing the dimensionality and symmetries of photonics systems has allowed for the realization of different topological phases is offered, and progress in understanding the interplay of topology with non-Hermitian effects, such as dissipation, is reviewed. As an exciting perspective, topological photonics can be combined with optical nonlinearities, leading toward new collective phenomena and novel strongly correlated states of light, such as an analog of the fractional quantum Hall effect.

3,052 citations

Proceedings Article
01 Jan 1999
TL;DR: In this paper, the authors describe photonic crystals as the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures, and the interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.
Abstract: The term photonic crystals appears because of the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures. During the recent years the investigation of one-, two-and three-dimensional periodic structures has attracted a widespread attention of the world optics community because of great potentiality of such structures in advanced applied optical fields. The interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.

2,722 citations

Journal ArticleDOI
TL;DR: Recent advances in the understanding and application of plasmon-induced hot carrier generation are discussed and some of the exciting new directions for the field are highlighted.
Abstract: The discovery of the photoelectric effect by Heinrich Hertz in 1887 set the foundation for over 125 years of hot carrier science and technology. In the early 1900s it played a critical role in the development of quantum mechanics, but even today the unique properties of these energetic, hot carriers offer new and exciting opportunities for fundamental research and applications. Measurement of the kinetic energy and momentum of photoejected hot electrons can provide valuable information on the electronic structure of materials. The heat generated by hot carriers can be harvested to drive a wide range of physical and chemical processes. Their kinetic energy can be used to harvest solar energy or create sensitive photodetectors and spectrometers. Photoejected charges can also be used to electrically dope two-dimensional materials. Plasmon excitations in metallic nanostructures can be engineered to enhance and provide valuable control over the emission of hot carriers. This Review discusses recent advances in the understanding and application of plasmon-induced hot carrier generation and highlights some of the exciting new directions for the field.

2,511 citations