scispace - formally typeset
Search or ask a question
Author

Mehmet Gönen

Bio: Mehmet Gönen is an academic researcher from Koç University. The author has contributed to research in topics: Multiple kernel learning & Support vector machine. The author has an hindex of 18, co-authored 80 publications receiving 3287 citations. Previous affiliations of Mehmet Gönen include Aalto University & Helsinki Institute for Information Technology.


Papers
More filters
Journal Article
TL;DR: Overall, using multiple kernels instead of a single one is useful and it is believed that combining kernels in a nonlinear or data-dependent way seems more promising than linear combination in fusing information provided by simple linear kernels, whereas linear methods are more reasonable when combining complex Gaussian kernels.
Abstract: In recent years, several methods have been proposed to combine multiple kernels instead of using a single one. These different kernels may correspond to using different notions of similarity or may be using information coming from multiple sources (different representations or different feature subsets). In trying to organize and highlight the similarities and differences between them, we give a taxonomy of and review several multiple kernel learning algorithms. We perform experiments on real data sets for better illustration and comparison of existing algorithms. We see that though there may not be large differences in terms of accuracy, there is difference between them in complexity as given by the number of stored support vectors, the sparsity of the solution as given by the number of used kernels, and training time complexity. We see that overall, using multiple kernels instead of a single one is useful and believe that combining kernels in a nonlinear or data-dependent way seems more promising than linear combination in fusing information provided by simple linear kernels, whereas linear methods are more reasonable when combining complex Gaussian kernels.

1,762 citations

Journal ArticleDOI
TL;DR: This work considers four different drug-target interaction networks from humans involving enzymes, ion channels, G-protein-coupled receptors and nuclear receptors and proposes a novel Bayesian formulation that combines dimensionality reduction, matrix factorization and binary classification for predicting drug- target interaction networks.
Abstract: Motivation: Identifying interactions between drug compounds and target proteins has a great practical importance in the drug discovery process for known diseases. Existing databases contain very few experimentally validated drug–target interactions and formulating successful computational methods for predicting interactions remains challenging. Results: In this study, we consider four different drug–target interaction networks from humans involving enzymes, ion channels, G-protein-coupled receptors and nuclear receptors. We then propose a novel Bayesian formulation that combines dimensionality reduction, matrix factorization and binary classification for predicting drug–target interaction networks using only chemical similarity between drug compounds and genomic similarity between target proteins. The novelty of our approach comes from the joint Bayesian formulation of projecting drug compounds and target proteins into a unified subspace using the similarities and estimating the interaction network in that subspace. We propose using a variational approximation in order to obtain an efficient inference scheme and give its detailed derivations. Finally, we demonstrate the performance of our proposed method in three different scenarios: (i) exploratory data analysis using low-dimensional projections, (ii) predicting interactions for the out-of-sample drug compounds and (iii) predicting unknown interactions of the given network. Availability: Software and Supplementary Material are available at http://users.ics.aalto.fi/gonen/kbmf2k. Contact: mehmet.gonen@aalto.fi Supplementary information:Supplementary data are available at Bioinformatics online.

358 citations

Proceedings ArticleDOI
05 Jul 2008
TL;DR: A localized multiple kernel learning (LMKL) algorithm using a gating model for selecting the appropriate kernel function locally and the kernel-based classifier are coupled and their optimization is done in a joint manner.
Abstract: Recently, instead of selecting a single kernel, multiple kernel learning (MKL) has been proposed which uses a convex combination of kernels, where the weight of each kernel is optimized during training. However, MKL assigns the same weight to a kernel over the whole input space. In this paper, we develop a localized multiple kernel learning (LMKL) algorithm using a gating model for selecting the appropriate kernel function locally. The localizing gating model and the kernel-based classifier are coupled and their optimization is done in a joint manner. Empirical results on ten benchmark and two bioinformatics data sets validate the applicability of our approach. LMKL achieves statistically similar accuracy results compared with MKL by storing fewer support vectors. LMKL can also combine multiple copies of the same kernel function localized in different parts. For example, LMKL with multiple linear kernels gives better accuracy results than using a single linear kernel on bioinformatics data sets.

293 citations

Proceedings Article
08 Dec 2014
TL;DR: A novel multiple kernel learning algorithm is proposed that extends kernel k-means clustering to the multiview setting, which combines kernels calculated on the views in a localized way to better capture sample-specific characteristics of the data.
Abstract: In many modern applications from, for example, bioinformatics and computer vision, samples have multiple feature representations coming from different data sources. Multiview learning algorithms try to exploit all these available information to obtain a better learner in such scenarios. In this paper, we propose a novel multiple kernel learning algorithm that extends kernel k-means clustering to the multiview setting, which combines kernels calculated on the views in a localized way to better capture sample-specific characteristics of the data. We demonstrate the better performance of our localized data fusion approach on a human colon and rectal cancer data set by clustering patients. Our method finds more relevant prognostic patient groups than global data fusion methods when we evaluate the results with respect to three commonly used clinical biomarkers.

119 citations

Journal ArticleDOI
TL;DR: A novel kernelized Bayesian matrix factorization method is applied to solve the modeling task of predicting the responses to new drugs for new cancer cell lines, and a complete global map of drug response is explored to assess treatment potential and treatment range of therapeutically interesting anticancer drugs.
Abstract: With data from recent large-scale drug sensitivity measurement campaigns, it is now possible to build and test models predicting responses for more than one hundred anticancer drugs against several hundreds of human cancer cell lines. Traditional quantitative structure-activity relationship (QSAR) approaches focus on small molecules in searching for their structural properties predictive of the biological activity in a single cell line or a single tissue type. We extend this line of research in two directions: (1) an integrative QSAR approach predicting the responses to new drugs for a panel of multiple known cancer cell lines simultaneously and (2) a personalized QSAR approach predicting the responses to new drugs for new cancer cell lines. To solve the modeling task, we apply a novel kernelized Bayesian matrix factorization method. For maximum applicability and predictive performance, the method optionally utilizes genomic features of cell lines and target information on drugs in addition to chemical drug descriptors. In a case study with 116 anticancer drugs and 650 cell lines, we demonstrate the usefulness of the method in several relevant prediction scenarios, differing in the amount of available information, and analyze the importance of various types of drug features for the response prediction. Furthermore, after predicting the missing values of the data set, a complete global map of drug response is explored to assess treatment potential and treatment range of therapeutically interesting anticancer drugs.

102 citations


Cited by
More filters
01 Jan 2020
TL;DR: Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future.
Abstract: Summary Background Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described. Methods In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020. Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors. We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death. Findings 191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients). Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03–1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61–12·23; p Interpretation The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage. Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future. Funding Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.

4,408 citations

Journal ArticleDOI
TL;DR: This review covers computer-assisted analysis of images in the field of medical imaging and introduces the fundamentals of deep learning methods and their successes in image registration, detection of anatomical and cellular structures, tissue segmentation, computer-aided disease diagnosis and prognosis, and so on.
Abstract: This review covers computer-assisted analysis of images in the field of medical imaging. Recent advances in machine learning, especially with regard to deep learning, are helping to identify, classify, and quantify patterns in medical images. At the core of these advances is the ability to exploit hierarchical feature representations learned solely from data, instead of features designed by hand according to domain-specific knowledge. Deep learning is rapidly becoming the state of the art, leading to enhanced performance in various medical applications. We introduce the fundamentals of deep learning methods and review their successes in image registration, detection of anatomical and cellular structures, tissue segmentation, computer-aided disease diagnosis and prognosis, and so on. We conclude by discussing research issues and suggesting future directions for further improvement.

2,653 citations

Journal ArticleDOI
TL;DR: This paper surveys the recent advances in multimodal machine learning itself and presents them in a common taxonomy to enable researchers to better understand the state of the field and identify directions for future research.
Abstract: Our experience of the world is multimodal - we see objects, hear sounds, feel texture, smell odors, and taste flavors Modality refers to the way in which something happens or is experienced and a research problem is characterized as multimodal when it includes multiple such modalities In order for Artificial Intelligence to make progress in understanding the world around us, it needs to be able to interpret such multimodal signals together Multimodal machine learning aims to build models that can process and relate information from multiple modalities It is a vibrant multi-disciplinary field of increasing importance and with extraordinary potential Instead of focusing on specific multimodal applications, this paper surveys the recent advances in multimodal machine learning itself and presents them in a common taxonomy We go beyond the typical early and late fusion categorization and identify broader challenges that are faced by multimodal machine learning, namely: representation, translation, alignment, fusion, and co-learning This new taxonomy will enable researchers to better understand the state of the field and identify directions for future research

1,945 citations

Journal Article
TL;DR: Overall, using multiple kernels instead of a single one is useful and it is believed that combining kernels in a nonlinear or data-dependent way seems more promising than linear combination in fusing information provided by simple linear kernels, whereas linear methods are more reasonable when combining complex Gaussian kernels.
Abstract: In recent years, several methods have been proposed to combine multiple kernels instead of using a single one. These different kernels may correspond to using different notions of similarity or may be using information coming from multiple sources (different representations or different feature subsets). In trying to organize and highlight the similarities and differences between them, we give a taxonomy of and review several multiple kernel learning algorithms. We perform experiments on real data sets for better illustration and comparison of existing algorithms. We see that though there may not be large differences in terms of accuracy, there is difference between them in complexity as given by the number of stored support vectors, the sparsity of the solution as given by the number of used kernels, and training time complexity. We see that overall, using multiple kernels instead of a single one is useful and believe that combining kernels in a nonlinear or data-dependent way seems more promising than linear combination in fusing information provided by simple linear kernels, whereas linear methods are more reasonable when combining complex Gaussian kernels.

1,762 citations