scispace - formally typeset
Search or ask a question
Author

Mehran Abolhasan

Bio: Mehran Abolhasan is an academic researcher from University of Technology, Sydney. The author has contributed to research in topics: Routing protocol & Link-state routing protocol. The author has an hindex of 24, co-authored 165 publications receiving 5010 citations. Previous affiliations of Mehran Abolhasan include University of Sydney & University of Wollongong.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper evaluates the relevant PHY and MAC techniques for their ability to improve the reliability and reduce the latency and identifies that enabling long-term evolution to coexist in the unlicensed spectrum is also a potential enabler of URLLC in theUnlicensed band.
Abstract: Future 5th generation networks are expected to enable three key services—enhanced mobile broadband, massive machine type communications and ultra-reliable and low latency communications (URLLC). As per the 3rd generation partnership project URLLC requirements, it is expected that the reliability of one transmission of a 32 byte packet will be at least 99.999% and the latency will be at most 1 ms. This unprecedented level of reliability and latency will yield various new applications, such as smart grids, industrial automation and intelligent transport systems. In this survey we present potential future URLLC applications, and summarize the corresponding reliability and latency requirements. We provide a comprehensive discussion on physical (PHY) and medium access control (MAC) layer techniques that enable URLLC, addressing both licensed and unlicensed bands. This paper evaluates the relevant PHY and MAC techniques for their ability to improve the reliability and reduce the latency. We identify that enabling long-term evolution to coexist in the unlicensed spectrum is also a potential enabler of URLLC in the unlicensed band, and provide numerical evaluations. Lastly, this paper discusses the potential future research directions and challenges in achieving the URLLC requirements.

185 citations

Journal ArticleDOI
TL;DR: This work presents “PrivySharing,” a blockchain-based innovative framework for privacy-preserving and secure IoT data sharing in a smart city environment that conforms to some of the significant requirements outlined in the European Union General Data Protection Regulation.

152 citations

Proceedings ArticleDOI
08 Oct 2009
TL;DR: Three routing protocols are investigated using a real-world testbed to show the multi-hopping performance and the ability of each routing protocol to recover from link failures, and results show that B.A.T.M.N. and BABEL outperform OLSR both in terms of multi- Hopping Performance and in route re-discovery latency.
Abstract: The proliferation of mesh or ad hoc network protocols has lead to a push for protocol standardisation. While there are a number of both open-source and proprietary mesh routing protocols being developed, there is only a small amount of literature available that shows relative strengths and weaknesses of different protocols. This paper investigates the performance of a number of available routing protocols using a real-world testbed. Three routing protocols — Optimised Link State Routing (OLSR), Better Approach To Mobile Ad hoc Network (B.A.T.M.A.N.) and BABEL — were chosen for this study. Our investigations focus on the multi-hopping performance and the ability of each routing protocol to recover from link failures. Our results show that B.A.T.M.A.N. and BABEL outperform OLSR both in terms of multi-hopping performance and in route re-discovery latency.

136 citations

Proceedings ArticleDOI
16 Mar 2018
TL;DR: A new hierarchical 5G Next generation VANET architecture is proposed to integrate the centralization and flexibility of Software Defined Networking and Cloud-RAN, with 5G communication technologies, to effectively allocate resources with a global view.
Abstract: The growth of technical revolution towards 5G Next generation networks is expected to meet various communication requirements of future Intelligent Transportation Systems (ITS). Motivated by the consumer needs for variety of ITS applications, bandwidth, high speed and ubiquity, researches are currently exploring different network architectures and techniques, which could be employed in Next generation ITS. To provide flexible network management, control and high resource utilization in Vehicular Ad-hoc Networks (VANETs) on large scale, a new hierarchical 5G Next generation VANET architecture is proposed. The key idea of this holistic architecture is to integrate the centralization and flexibility of Software Defined Networking (SDN) and Cloud-RAN (CRAN), with 5G communication technologies, to effectively allocate resources with a global view. Moreover, a fog computing framework (comprising of zones and clusters) has been proposed at the edge, to avoid frequent handovers between vehicles and RSUs. The transmission delay, throughput and control overhead on controller are analyzed and compared with other architectures. Simulation results indicate reduced transmission delay and minimized control overhead on controllers. Moreover, the throughput of proposed system is also improved.

112 citations

Journal ArticleDOI
TL;DR: A survey of existing routing protocols mainly proposed for BANs is provided, further classified into five main categories namely, temperature based, crosslayer, cluster based, cost-effective and QoS-based routing, where each protocol is described under its specified category.
Abstract: Recent technological advancements in wireless communication, integrated circuits and Micro-Electro-Mechanical Systems (MEMs) has enabled miniaturized, lowpower, intelligent, invasive/ non-invasive micro and nanotechnology sensor nodes placed in or on the human body for use in monitoring body function and its immediate environment referred to as Body Area Networks (BANs). BANs face many stringent requirements in terms of delay, power, temperature and network lifetime which need to be taken into serious consideration in the design of different protocols. Since routing protocols play an important role in the overall system performance in terms of delay, power consumption, temperature and so on, a thorough study on existing routing protocols in BANs is necessary. Also, the specific challenges of BANs necessitates the design of new routing protocols specifically designed for BANs. This paper provides a survey of existing routing protocols mainly proposed for BANs. These protocols are further classified into five main categories namely, temperature based, crosslayer, cluster based, cost-effective and QoS-based routing, where each protocol is described under its specified category. Also, comparison among routing protocols in each category is given.

98 citations


Cited by
More filters
Journal ArticleDOI
01 May 2005
TL;DR: In this paper, several fundamental key aspects of underwater acoustic communications are investigated and a cross-layer approach to the integration of all communication functionalities is suggested.
Abstract: Underwater sensor nodes will find applications in oceanographic data collection, pollution monitoring, offshore exploration, disaster prevention, assisted navigation and tactical surveillance applications. Moreover, unmanned or autonomous underwater vehicles (UUVs, AUVs), equipped with sensors, will enable the exploration of natural undersea resources and gathering of scientific data in collaborative monitoring missions. Underwater acoustic networking is the enabling technology for these applications. Underwater networks consist of a variable number of sensors and vehicles that are deployed to perform collaborative monitoring tasks over a given area. In this paper, several fundamental key aspects of underwater acoustic communications are investigated. Different architectures for two-dimensional and three-dimensional underwater sensor networks are discussed, and the characteristics of the underwater channel are detailed. The main challenges for the development of efficient networking solutions posed by the underwater environment are detailed and a cross-layer approach to the integration of all communication functionalities is suggested. Furthermore, open research issues are discussed and possible solution approaches are outlined. � 2005 Published by Elsevier B.V.

2,864 citations

Journal ArticleDOI
TL;DR: This paper surveys the work done toward all of the outstanding issues, relating to this new class of networks, so as to spur further research in these areas.
Abstract: Unmanned aerial vehicles (UAVs) have enormous potential in the public and civil domains. These are particularly useful in applications, where human lives would otherwise be endangered. Multi-UAV systems can collaboratively complete missions more efficiently and economically as compared to single UAV systems. However, there are many issues to be resolved before effective use of UAVs can be made to provide stable and reliable context-specific networks. Much of the work carried out in the areas of mobile ad hoc networks (MANETs), and vehicular ad hoc networks (VANETs) does not address the unique characteristics of the UAV networks. UAV networks may vary from slow dynamic to dynamic and have intermittent links and fluid topology. While it is believed that ad hoc mesh network would be most suitable for UAV networks yet the architecture of multi-UAV networks has been an understudied area. Software defined networking (SDN) could facilitate flexible deployment and management of new services and help reduce cost, increase security and availability in networks. Routing demands of UAV networks go beyond the needs of MANETS and VANETS. Protocols are required that would adapt to high mobility, dynamic topology, intermittent links, power constraints, and changing link quality. UAVs may fail and the network may get partitioned making delay and disruption tolerance an important design consideration. Limited life of the node and dynamicity of the network lead to the requirement of seamless handovers, where researchers are looking at the work done in the areas of MANETs and VANETs, but the jury is still out. As energy supply on UAVs is limited, protocols in various layers should contribute toward greening of the network. This paper surveys the work done toward all of these outstanding issues, relating to this new class of networks, so as to spur further research in these areas.

1,636 citations

Journal ArticleDOI
TL;DR: The current state-of-art of WBANs is surveyed based on the latest standards and publications, and open issues and challenges within each area are explored as a source of inspiration towards future developments inWBANs.
Abstract: Recent developments and technological advancements in wireless communication, MicroElectroMechanical Systems (MEMS) technology and integrated circuits has enabled low-power, intelligent, miniaturized, invasive/non-invasive micro and nano-technology sensor nodes strategically placed in or around the human body to be used in various applications, such as personal health monitoring. This exciting new area of research is called Wireless Body Area Networks (WBANs) and leverages the emerging IEEE 802.15.6 and IEEE 802.15.4j standards, specifically standardized for medical WBANs. The aim of WBANs is to simplify and improve speed, accuracy, and reliability of communication of sensors/actuators within, on, and in the immediate proximity of a human body. The vast scope of challenges associated with WBANs has led to numerous publications. In this paper, we survey the current state-of-art of WBANs based on the latest standards and publications. Open issues and challenges within each area are also explored as a source of inspiration towards future developments in WBANs.

1,359 citations

Journal ArticleDOI
TL;DR: This paper is the first to present the state-of-the-art of the SAGIN since existing survey papers focused on either only one single network segment in space or air, or the integration of space-ground, neglecting the Integration of all the three network segments.
Abstract: Space-air-ground integrated network (SAGIN), as an integration of satellite systems, aerial networks, and terrestrial communications, has been becoming an emerging architecture and attracted intensive research interest during the past years. Besides bringing significant benefits for various practical services and applications, SAGIN is also facing many unprecedented challenges due to its specific characteristics, such as heterogeneity, self-organization, and time-variability. Compared to traditional ground or satellite networks, SAGIN is affected by the limited and unbalanced network resources in all three network segments, so that it is difficult to obtain the best performances for traffic delivery. Therefore, the system integration, protocol optimization, resource management, and allocation in SAGIN is of great significance. To the best of our knowledge, we are the first to present the state-of-the-art of the SAGIN since existing survey papers focused on either only one single network segment in space or air, or the integration of space-ground, neglecting the integration of all the three network segments. In light of this, we present in this paper a comprehensive review of recent research works concerning SAGIN from network design and resource allocation to performance analysis and optimization. After discussing several existing network architectures, we also point out some technology challenges and future directions.

661 citations