scispace - formally typeset
Search or ask a question
Author

Mehran Abolhasan

Bio: Mehran Abolhasan is an academic researcher from University of Technology, Sydney. The author has contributed to research in topics: Routing protocol & Link-state routing protocol. The author has an hindex of 24, co-authored 165 publications receiving 5010 citations. Previous affiliations of Mehran Abolhasan include University of Sydney & University of Wollongong.


Papers
More filters
Journal ArticleDOI
TL;DR: Extensive studies simulations for DSR, AODV, LAR1, FSR and WRP in homogenous and heterogeneous networks that consist of different nodes with different resources showed that while all protocols perform reasonably well in homogeneous networking conditions, their performance suffer significantly over heterogonous networks.

60 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss the evolution of the Internet of Things and present the vision for IoT 2.0 development across seven major fields including machine learning intelligence, mission critical communication, scalability, energy harvesting-based energy sustainability, interoperability, user friendly IoT, and security.
Abstract: Applications and technologies of the Internet of Things are in high demand with the increase of network devices. With the development of technologies such as 5G, machine learning, edge computing, and Industry 4.0, the Internet of Things has evolved. This survey article discusses the evolution of the Internet of Things and presents the vision for Internet of Things 2.0. The Internet of Things 2.0 development is discussed across seven major fields. These fields are machine learning intelligence, mission critical communication, scalability, energy harvesting-based energy sustainability, interoperability, user friendly IoT, and security. Other than these major fields, the architectural development of the Internet of Things and major types of applications are also reviewed. Finally, this article ends with the vision and current limitations of the Internet of Things in future network environments.

52 citations

Journal ArticleDOI
TL;DR: A hybrid-fuzzy logic guided genetic algorithm (H-FLGA) approach for the software defined networking controller to solve a multi-objective resource optimization problem for 5G driven VANETs and shows the minimized value of end-to-end delay as compared to other schemes.
Abstract: To support diversified quality of service demands and dynamic resource requirements of users in 5G driven VANETs, network resources need flexible and scalable resource allocation strategies. Current heterogeneous vehicular networks are designed and deployed with a connection-centric mindset with fixed resource allocation to a cell regardless of traffic conditions, static coverage, and capacity. In this paper, we propose a hybrid-fuzzy logic guided genetic algorithm (H-FLGA) approach for the software defined networking controller, to solve a multi-objective resource optimization problem for 5G driven VANETs. Realizing the service oriented view, the proposed approach formulates five different scenarios of network resource optimization in 5G VANETs. Furthermore, the proposed fuzzy inference system is used to optimize weights of multi-objectives, depending on the type of service requirements of customers. The proposed approach shows the minimized value of multi-objective cost function when compared with the GA. The simulation results show the minimized value of end-to-end delay as compared to other schemes. The proposed approach will help the network service providers to implement a customer-centric network infrastructure, depending on dynamic customer needs of users.

52 citations

Proceedings ArticleDOI
10 Jun 2014
TL;DR: This paper proposes a probabilistic approach to avoid interference amongst coexisting Wireless Body Area Networks, and analytically shows that the outage probability can be effectively reduced at the cost of very small change in the spatial reuse factor.
Abstract: In this paper, a dynamic resource allocation scheme is proposed to avoid interference amongst coexisting Wireless Body Area Networks (WBAN). In the proposed scheme, each WBAN generates a table consisting of interfering nodes from coexisting WBANs in its vicinity. Then each WBAN broadcasts this table to its neighbors, which allows for efficient interpretation of an Interference Region (IR) between each pair of WBANs. The nodes in the IR are later allocated orthogonal sub-channels; whilst nodes that do not exist in the IR can potentially transmit in the same time interval. We further demonstrate a precise tradeoff between the minimum interference level and spatial reuse. Simulation results show that our proposed scheme has far better spectral efficiency compared to the conventional orthogonal schemes, whilst maintaining an acceptable interference level. We also provide mathematical analysis on the proposed scheme to validate its efficiency for increasing spectral efficiency and avoiding interference. To further reduce the interference level, we propose a probabilistic approach, and analytically show that the outage probability can be effectively reduced at the cost of very small change in the spatial reuse factor.

51 citations

Journal ArticleDOI
TL;DR: This protocol based on social interaction is shown to mitigate interference and minimize power consumption, and increase the spatial reuse and PDR of each WBAN, while increasing network lifetime.
Abstract: This paper presents an adaptive interference mitigation scheme for multiple coexisting wireless body area networks (WBANs) based on social interaction. The proposed scheme considers the mobility of nodes within each WBAN as well as the relative movement of WBANs with respect to each other. With respect to these mobile scenarios traffic load, signal strength, and the density of sensors in a WBAN are incorporated to optimize transmission time with synchronous and parallel transmissions to significantly reduce the radio interference and energy consumption of nodes. This approach leads to higher packet delivery ratio (PDR) and longer network lifetime even with nodes dynamically moving into and out of each others interference region. We make channel assignment more energy-efficient and further reduce power consumption using transmit power control with simple channel prediction. Simulation results show that our approach maintains optimum spatial reuse with a range of channel dynamics within, and between, coexisting BANs. This protocol based on social interaction is shown to mitigate interference and minimize power consumption, and increase the spatial reuse and PDR of each WBAN, while increasing network lifetime. In the context of the adaptive interference mitigation scheme proposed, this paper also reviews the state of the art in literature on mobility, MAC layer, and power control solutions for WBANs, as well as providing a summary of interference mitigation schemes previously applied for the coexistence of WBANs.

49 citations


Cited by
More filters
Journal ArticleDOI
01 May 2005
TL;DR: In this paper, several fundamental key aspects of underwater acoustic communications are investigated and a cross-layer approach to the integration of all communication functionalities is suggested.
Abstract: Underwater sensor nodes will find applications in oceanographic data collection, pollution monitoring, offshore exploration, disaster prevention, assisted navigation and tactical surveillance applications. Moreover, unmanned or autonomous underwater vehicles (UUVs, AUVs), equipped with sensors, will enable the exploration of natural undersea resources and gathering of scientific data in collaborative monitoring missions. Underwater acoustic networking is the enabling technology for these applications. Underwater networks consist of a variable number of sensors and vehicles that are deployed to perform collaborative monitoring tasks over a given area. In this paper, several fundamental key aspects of underwater acoustic communications are investigated. Different architectures for two-dimensional and three-dimensional underwater sensor networks are discussed, and the characteristics of the underwater channel are detailed. The main challenges for the development of efficient networking solutions posed by the underwater environment are detailed and a cross-layer approach to the integration of all communication functionalities is suggested. Furthermore, open research issues are discussed and possible solution approaches are outlined. � 2005 Published by Elsevier B.V.

2,864 citations

Journal ArticleDOI
TL;DR: This paper surveys the work done toward all of the outstanding issues, relating to this new class of networks, so as to spur further research in these areas.
Abstract: Unmanned aerial vehicles (UAVs) have enormous potential in the public and civil domains. These are particularly useful in applications, where human lives would otherwise be endangered. Multi-UAV systems can collaboratively complete missions more efficiently and economically as compared to single UAV systems. However, there are many issues to be resolved before effective use of UAVs can be made to provide stable and reliable context-specific networks. Much of the work carried out in the areas of mobile ad hoc networks (MANETs), and vehicular ad hoc networks (VANETs) does not address the unique characteristics of the UAV networks. UAV networks may vary from slow dynamic to dynamic and have intermittent links and fluid topology. While it is believed that ad hoc mesh network would be most suitable for UAV networks yet the architecture of multi-UAV networks has been an understudied area. Software defined networking (SDN) could facilitate flexible deployment and management of new services and help reduce cost, increase security and availability in networks. Routing demands of UAV networks go beyond the needs of MANETS and VANETS. Protocols are required that would adapt to high mobility, dynamic topology, intermittent links, power constraints, and changing link quality. UAVs may fail and the network may get partitioned making delay and disruption tolerance an important design consideration. Limited life of the node and dynamicity of the network lead to the requirement of seamless handovers, where researchers are looking at the work done in the areas of MANETs and VANETs, but the jury is still out. As energy supply on UAVs is limited, protocols in various layers should contribute toward greening of the network. This paper surveys the work done toward all of these outstanding issues, relating to this new class of networks, so as to spur further research in these areas.

1,636 citations

Journal ArticleDOI
TL;DR: The current state-of-art of WBANs is surveyed based on the latest standards and publications, and open issues and challenges within each area are explored as a source of inspiration towards future developments inWBANs.
Abstract: Recent developments and technological advancements in wireless communication, MicroElectroMechanical Systems (MEMS) technology and integrated circuits has enabled low-power, intelligent, miniaturized, invasive/non-invasive micro and nano-technology sensor nodes strategically placed in or around the human body to be used in various applications, such as personal health monitoring. This exciting new area of research is called Wireless Body Area Networks (WBANs) and leverages the emerging IEEE 802.15.6 and IEEE 802.15.4j standards, specifically standardized for medical WBANs. The aim of WBANs is to simplify and improve speed, accuracy, and reliability of communication of sensors/actuators within, on, and in the immediate proximity of a human body. The vast scope of challenges associated with WBANs has led to numerous publications. In this paper, we survey the current state-of-art of WBANs based on the latest standards and publications. Open issues and challenges within each area are also explored as a source of inspiration towards future developments in WBANs.

1,359 citations

Journal ArticleDOI
TL;DR: This paper is the first to present the state-of-the-art of the SAGIN since existing survey papers focused on either only one single network segment in space or air, or the integration of space-ground, neglecting the Integration of all the three network segments.
Abstract: Space-air-ground integrated network (SAGIN), as an integration of satellite systems, aerial networks, and terrestrial communications, has been becoming an emerging architecture and attracted intensive research interest during the past years. Besides bringing significant benefits for various practical services and applications, SAGIN is also facing many unprecedented challenges due to its specific characteristics, such as heterogeneity, self-organization, and time-variability. Compared to traditional ground or satellite networks, SAGIN is affected by the limited and unbalanced network resources in all three network segments, so that it is difficult to obtain the best performances for traffic delivery. Therefore, the system integration, protocol optimization, resource management, and allocation in SAGIN is of great significance. To the best of our knowledge, we are the first to present the state-of-the-art of the SAGIN since existing survey papers focused on either only one single network segment in space or air, or the integration of space-ground, neglecting the integration of all the three network segments. In light of this, we present in this paper a comprehensive review of recent research works concerning SAGIN from network design and resource allocation to performance analysis and optimization. After discussing several existing network architectures, we also point out some technology challenges and future directions.

661 citations