scispace - formally typeset
Search or ask a question
Author

Meihua Jin

Bio: Meihua Jin is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Superhydrophilicity & Nanorod. The author has an hindex of 4, co-authored 4 publications receiving 2382 citations. Previous affiliations of Meihua Jin include Jilin University & Tsinghua University.

Papers
More filters
Journal ArticleDOI
Xinjian Feng1, Lin Feng1, Meihua Jin1, Jin Zhai1, Lei Jiang1, Daoben Zhu1 
TL;DR: Remarkable surface wettability transition occurs with an inducement of ultraviolet (UV) for aligned ZnO nanorod films and this reversible effect is ascribed to the cooperation of the surface photosensitivity and the aligned nanostructure.
Abstract: Remarkable surface wettability transition occurs with an inducement of ultraviolet (UV) for aligned ZnO nanorod films. The inorganic oxide films, which show super-hydrophobicity (left), become super-hydrophilic (right) when exposed to UV illumination. After the films are placed in the dark, the wettability evolves back to super-hydrophobicity. This reversible effect is ascribed to the cooperation of the surface photosensitivity and the aligned nanostructure. Such special property will greatly extend the applications of ZnO films.

1,137 citations

Journal ArticleDOI
TL;DR: In this paper, a rough polydimethylsiloxane (PDMS) surface containing micro-, sub-micro-, and nano-composite structures was fabricated using a facile one-step laser etching method.
Abstract: Summary: Rough polydimethylsiloxane (PDMS) surface containing micro-, submicro- and nano-composite structures was fabricated using a facile one-step laser etching method. Such surface shows a super-hydrophobic character with contact angle higher than 160° and sliding angle lower than 5°, i.e. self-cleaning effect like lotus leaf. The wettabilities of the rough PDMS surfaces can be tunable by simply controlling the size of etched microstructures. The adhesive force between etched PDMS surface and water droplet is evaluated, and the structure effect is deduced by comparing it with those own a single nano- or micro-scale structures. This super-hydrophobic PDMS surface can be widely applied to many areas such as liquid transportation without loss, and micro-pump (creating pushing-force) needless micro-fluidic devices. Etched PDMS surface containing micro-, submicro-, and nano-composite structures shows a self-cleaning effect with water CA as high as 162° and SA lower than 5°.

355 citations

Journal ArticleDOI
TL;DR: The facile fabrication of a functional nanoporous multilayer film with wettability that is reversibly tunable between superhydrophobicity and superHydrophilicity with UV/visible irradiation is reported, opening up new avenues for external stimuli-responsive smart surfaces.
Abstract: We report the facile fabrication of a functional nanoporous multilayer film with wettability that is reversibly tunable between superhydrophobicity and superhydrophilicity with UV/visible irradiation. Our approach controls surface roughness with an electrostatic self-assembly process and makes use of the photoresponsive molecular switching of fluorinated azobenzene molecules. Selective UV irradiation onto the nanostructured substrate was used to realize substrates with erasable and rewritable patterns of extreme wetting properties. Our findings will open up new avenues for external stimuli-responsive smart surfaces.

341 citations

Journal ArticleDOI
TL;DR: In this paper , a Janus synergy apparatus consisting of superoleophobic steel mesh (OSM) and superoleophIlic polyurethane sponge (IPS) was developed for the treatment of underwater dispersed oil.
Abstract: The treatment of oily wastewater has always been an important problem in environmental management because the oil in the water is seriously harmful to the ecological environment. Although great progress has been made in the development of oil‐bearing wastewater treatment technology, there are still some problems in the treatment technology of dispersed oil in water, such as complicated treatment processes, high energy consumption, low treatment efficiency, secondary pollution, and difficult maintenance. Here, inspired by biological Janus synergy, a Janus synergy apparatus has been developed consisting of superoleophobic steel mesh (OSM) and superoleophIlic polyurethane sponge (IPS). By combining the underwater “capture oil” characteristic of OSM with the ability to store large amounts of oil of IPS, the two materials are combined to achieve an absorption rate above 95% of underwater oil in situ treatment. Due to the fact that the underwater oil can be directly captured, collected, and separated excellently, the prepared OSM/IPS Janus apparatus demonstrates the one‐step treatment of underwater oil, which needs neither more equipment nor additional power, and it is reusable and not easy to secondary pollution. Therefore, the development of this apparatus provides an economical and effective method for the treatment of underwater dispersed oil.

1 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the roughness of a solid is discussed, and it is shown that both the apparent contact angle and the contact angle hysteresis can be dramatically affected by the presence of roughness.
Abstract: We discuss in this review how the roughness of a solid impacts its wettability. We see in particular that both the apparent contact angle and the contact angle hysteresis can be dramatically affected by the presence of roughness. Owing to the development of refined methods for setting very well-controlled micro- or nanotextures on a solid, these effects are being exploited to induce novel wetting properties, such as spontaneous filmification, superhydrophobicity, superoleophobicity, and interfacial slip, that could not be achieved without roughness.

2,219 citations

Journal ArticleDOI
TL;DR: Recent progress in wettability on functional surfaces is reviewed through the cooperation between the chemical composition and the surface micro- and nanostructures, which may bring great advantages in a wide variety of applications in daily life, industry, and agriculture.
Abstract: Biomimetic research indicates that many phenomena regarding wettability in nature, such as the self-cleaning effect on a lotus leaf and cicada wing, the anisotropic dewetting behavior on a rice leaf, and striking superhydrophobic force provided by a water strider's leg, are all related to the unique micro- and nanostructures on the surfaces. It gives us much inspiration to realize special wettability on functional surfaces through the cooperation between the chemical composition and the surface micro- and nanostructures, which may bring great advantages in a wide variety of applications in daily life, industry, and agriculture. This Account reviews recent progress in these aspects.

1,931 citations

Journal ArticleDOI
TL;DR: This critical review focuses on the recent progress (within the last three years) in the preparation, theoretical modeling, and applications of superhydrophobic surfaces.
Abstract: Superhydrophobic surfaces have drawn a lot of interest both in academia and in industry because of the self-cleaning properties. This critical review focuses on the recent progress (within the last three years) in the preparation, theoretical modeling, and applications of superhydrophobic surfaces. The preparation approaches are reviewed according to categorized approaches such as bottom-up, top-down, and combination approaches. The advantages and limitations of each strategy are summarized and compared. Progress in theoretical modeling of surface design and wettability behavior focuses on the transition state of superhydrophobic surfaces and the role of the roughness factor. Finally, the problems/obstacles related to applicability of superhydrophobic surfaces in real life are addressed. This review should be of interest to students and scientists interested specifically in superhydrophobic surfaces but also to scientists and industries focused in material chemistry in general.

1,885 citations

Journal ArticleDOI
TL;DR: In this paper, a survey of the recent achievements in the construction of surfaces with special wettabilities, such as superhydrophobicity, super-hydrophilicity and superoleophobicity, are presented.
Abstract: Recent achievements in the construction of surfaces with special wettabilities, such as superhydrophobicity, superhydrophilicity, superoleophobicity, superoleophilicity, superamphiphilicity, superamphiphobicity, superhydrophobicity/superoleophilicity, and reversible switching between superhydrophobicity and superhydrophilicity, are presented. Particular attention is paid to superhydrophobic surfaces created via various methods and surfaces with reversible superhydrophobicity and superhydrophilicity that are driven by various kinds of external stimuli. The control of the surface micro-/nanostructure and the chemical composition is critical for these special properties. These surfaces with controllable wettability are of great importance for both fundamental research and practical applications.

1,882 citations

Journal ArticleDOI
01 Mar 2008-Langmuir
TL;DR: Artificial fabrication of biomimic polymer films, with well-defined nanoembossed structures obtained by duplicating the petal's surface, indicates that the superhydrophobic surface and the adhesive petal are in Cassie impregnating wetting state.
Abstract: Hierarchical micropapillae and nanofolds are known to exist on the petals' surfaces of red roses. These micro- and nanostructures provide a sufficient roughness for superhydrophobicity and yet at the same time a high adhesive force with water. A water droplet on the surface of the petal appears spherical in shape, which cannot roll off even when the petal is turned upside down. We define this phenomenon as the “petal effect” as compared with the popular “lotus effect”. Artificial fabrication of biomimic polymer films, with well-defined nanoembossed structures obtained by duplicating the petal's surface, indicates that the superhydrophobic surface and the adhesive petal are in Cassie impregnating wetting state.

1,617 citations