scispace - formally typeset
Search or ask a question
Author

Meimei Li

Bio: Meimei Li is an academic researcher from Argonne National Laboratory. The author has contributed to research in topics: Irradiation & Ultimate tensile strength. The author has an hindex of 17, co-authored 97 publications receiving 1106 citations. Previous affiliations of Meimei Li include Oak Ridge National Laboratory & University of Illinois at Urbana–Champaign.


Papers
More filters
Book ChapterDOI
01 Jan 2012
TL;DR: In this paper, the physical and mechanical properties of pure copper and copper alloys with the focus on precipitation-hardened CuCrZr and dispersion-strengthened CuAl25 alloys are reviewed.
Abstract: High strength, high conductivity copper alloys are prime candidates for high heat flux applications in fusion energy systems. This chapter reviews the physical and mechanical properties of pure copper and copper alloys with the focus on precipitation-hardened CuCrZr and dispersion-strengthened CuAl25 alloys. The effect of neutron irradiation on copper and copper alloys is reviewed in terms of radiation effects on physical properties and mechanical properties (tensile properties, fracture toughness, fatigue and creep-fatigue), irradiation creep and void swelling. The effect of irradiation on the microstructure of copper and copper alloys and dislocation channeling is also presented. Joining techniques for copper alloys in fusion plasma facing components are briefly discussed.

162 citations

Journal ArticleDOI
TL;DR: In this article, high angle grain boundaries (GBs) have been used as sinks for defect clusters, like dislocation loops, in nanocrystalline (NC) Ni.
Abstract: Significant microstructural damage, in the form of defect clusters, typically occurs in metals subjected to heavy ion irradiation. High angle grain boundaries (GBs) have long been postulated as sinks for defect clusters, like dislocation loops. Here, we provide direct evidence, via in situ Kr ion irradiation within a transmission electron microscope, that high angle GBs in nanocrystalline (NC) Ni, with an average grain size of ~55 nm, can effectively absorb irradiation-induced dislocation loops and segments. These high angle GBs significantly reduce the density and size of irradiation-induced defect clusters in NC Ni compared to their bulk counterparts, and thus NC Ni achieves significant enhancement of irradiation tolerance.

100 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined the temperature dependence of this process in light of the operating deformation mechanisms and found that twinning is an important deformation mechanism at lower temperatures but is not available in the temperature range of concern since the stress to activate twinning becomes excessively high.

47 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of neutron irradiation on the mechanical properties of select molybdenum materials, unalloyed low carbon arc-cast (LCAC) Mo, Mo 0.5% Ti-0.1% Zr (TZM) alloy, and oxide dispersion-strengthened (ODS) Mo alloy, was characterized by analyzing the temperature dependence of mechanical properties.

44 citations

Journal ArticleDOI
TL;DR: In this paper, the deformation microstructure of polycrystalline molybdenum was characterized by room-temperature electrical resistivity measurements, transmission electron microscopy (TEM) and positron annihilation spectroscopy (PAS).

40 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Reference EntryDOI
31 Oct 2001
TL;DR: The American Society for Testing and Materials (ASTM) as mentioned in this paper is an independent organization devoted to the development of standards for testing and materials, and is a member of IEEE 802.11.
Abstract: The American Society for Testing and Materials (ASTM) is an independent organization devoted to the development of standards.

3,792 citations

Journal ArticleDOI
TL;DR: In this article, the three major materials challenges for the current and next generation of water-cooled fission reactors are centered on two structural materials aging degradation issues (corrosion and stress corrosion cracking of structural materials and neutron-induced embrittlement of reactor pressure vessels), along with improved fuel system reliability and accident tolerance issues.

1,633 citations

Journal ArticleDOI
TL;DR: A nanostructuring strategy is reported that achieves Mo alloys with yield strength over 800 MPa and tensile elongation as large as ~40% at room temperature and a general pathway for manufacturing dispersion-strengthened materials with both high strength and ductility.
Abstract: The high-temperature stability and mechanical properties of refractory molybdenum alloys are highly desirable for a wide range of critical applications. However, a long-standing problem for these alloys is that they suffer from low ductility and limited formability. Here we report a nanostructuring strategy that achieves Mo alloys with yield strength over 800 MPa and tensile elongation as large as ~ 40% at room temperature. The processing route involves a molecular-level liquid-liquid mixing/doping technique that leads to an optimal microstructure of submicrometre grains with nanometric oxide particles uniformly distributed in the grain interior. Our approach can be readily adapted to large-scale industrial production of ductile Mo alloys that can be extensively processed and shaped at low temperatures. The architecture engineered into such multicomponent alloys offers a general pathway for manufacturing dispersion-strengthened materials with both high strength and ductility.

728 citations

Journal ArticleDOI
TL;DR: In this paper, different aspects of the PWI are assessed in their importance for the initial wall materials choice: CFC for the strike point tiles, W in the divertor and baffle and Be on the first wall.

708 citations