scispace - formally typeset
Search or ask a question
Author

Meimei Zhang

Bio: Meimei Zhang is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Glacier & Climate change. The author has an hindex of 1, co-authored 1 publications receiving 25 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors developed a HMA Glacial Lake Inventory (Hi-MAG) database to characterize the annual coverage of glacial lakes from 2008 to 2017 at 30'm resolution using Landsat satellite imagery.
Abstract: . Climate change is intensifying glacier melting and lake development in High Mountain Asia (HMA), which could increase glacial lake outburst flood hazards and impact water resource and hydroelectric power management. However, quantification of variability in size and type of glacial lakes at high resolution has been incomplete in HMA. Here, we developed a HMA Glacial Lake Inventory (Hi-MAG) database to characterize the annual coverage of glacial lakes from 2008 to 2017 at 30 m resolution using Landsat satellite imagery. It is noted that a rapid increase in lake number and moderate area expansion was influenced by a large population of small glacial lake (≤ 0.04 km2), and faster growth in lake number occurred above 5300 m elevation. Proglacial lake dominated areas showed significant lake area expansion, while unconnected lake dominated areas exhibited stability or slight reduction. Small glacial lakes accounted for approximately 15% of the lake area in Eastern Hindu Kush, Western Himalaya, Northern/Western Tien Shan, and Gangdise Mountains, but contributed > 50 % of lake area expansion in these regions over a decade. Our results demonstrate proglacial lakes are a main contributor while small glacial lakes are an overlooked element to recent lake evolution in HMA. Regional geographic variability of debris cover, together with trends in warming and precipitation over the past few decades, largely explain the current distribution of supra- and proglacial lake area across HMA. The Hi-MAG database are available at: https://doi.org/10.5281/zenodo.3700282 , it can be used for studies on glacier-climate-lake interactions, glacio-hydrologic models, glacial lake outburst floods and potential downstream risks and water resources.

84 citations


Cited by
More filters
01 Dec 2013
TL;DR: This paper found that the most intensive glacier shrinkage is in the Himalayan region, whereas glacial retreat in the Pamir Plateau region is less apparent, due to changes in atmospheric circulations and precipitation patterns.
Abstract: Glacial melting in the Tibetan Plateau affects the water resources of millions of people. This study finds that—partly owing to changes in atmospheric circulations and precipitation patterns—the most intensive glacier shrinkage is in the Himalayan region, whereas glacial retreat in the Pamir Plateau region is less apparent.

1,599 citations

15 Dec 2015
TL;DR: In this paper, the first glacial lake in- ventories for the Third Pole were conducted for ~1990, 2000, and 2010 using Landsat TM/ETM+ data.
Abstract: article i nfo No glacial lake census exists for the Third Pole region, which includes the Pamir-Hindu Kush-Karakoram- Himalayas and the Tibetan Plateau. Therefore, comprehensive information is lacking about the distribution of and changes in glacial lakes caused by current global warming conditions. In this study, the first glacial lake in- ventories for the Third Pole were conducted for ~1990, 2000, and 2010 using Landsat TM/ETM+ data. Glacial lake spatial distributions, corresponding areas and temporal changes were examined. The significant results are as follows. (1) There were 4602, 4981, and 5701 glacial lakes (N0.003 km 2 ) covering areas of 553.9 ± 90, 581.2 ± 97, and 682.4 ± 110 km 2 in ~1990, 2000, and 2010, respectively; these lakes are primarily located in the Brahmaputra (39%),Indus (28%), and AmuDarya (10%) basins. (2) Small lakes (b0.2 km 2 ) are more sensitive to climate changes. (3) Lakes closer to glaciers and at higher altitudes, particularly thoseconnected to glacier ter- mini, have undergone larger area changes. (4) Glacier-fed lakes are dominant in both quantity and area (N70%) and exhibit faster expansion trends overall compared to non-glacier-fed lakes. We conclude that glacier meltwa- ter may play a dominant role in the areal expansion of most glacial lakes in the Third Pole. In addition, the pat- terns of the glacier-fed lakes correspond well with warming temperature trends and negative glacier mass balance patterns. This paper presents an important database of glacial lakes and provides a basis for long-term monitoring and evaluation of outburst flood disasters primarily caused by glacial lakes in the Third Pole.

206 citations

Journal ArticleDOI
TL;DR: In this paper , the authors recommend forward-looking design and maintenance measures and sustainable sediment management solutions that can help transition towards climate change-resilient dams and reservoirs in High Mountain Asia, in large part based on improved monitoring and prediction of compound and cascading hazards.
Abstract: Global warming-induced melting and thawing of the cryosphere are severely altering the volume and timing of water supplied from High Mountain Asia, adversely affecting downstream food and energy systems that are relied on by billions of people. The construction of more reservoirs designed to regulate streamflow and produce hydropower is a critical part of strategies for adapting to these changes. However, these projects are vulnerable to a complex set of interacting processes that are destabilizing landscapes throughout the region. Ranging in severity and the pace of change, these processes include glacial retreat and detachments, permafrost thaw and associated landslides, rock–ice avalanches, debris flows and outburst floods from glacial lakes and landslide-dammed lakes. The result is large amounts of sediment being mobilized that can fill up reservoirs, cause dam failure and degrade power turbines. Here we recommend forward-looking design and maintenance measures and sustainable sediment management solutions that can help transition towards climate change-resilient dams and reservoirs in High Mountain Asia, in large part based on improved monitoring and prediction of compound and cascading hazards. Climate change is exacerbating geohazards in High Mountain Asia that pose a growing risk to hydropower and water infrastructure across the region.

50 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the first complete inventory for future glacial lakes in High Mountain Asia by computing the subglacial bedrock for ~100 000 glaciers and estimating overdeepening area, volume and impact hazard for the larger potential lakes.
Abstract: Bedrock overdeepenings exposed by continued glacial retreat can store precipitation and meltwater, potentially leading to the formation of new proglacial lakes. These lakes may pose threats of glacial lake outburst floods (GLOFs) in high mountain areas, particularly if new lakes form in geomorphological setups prone to triggering events such as landslides or moraine collapses. We present the first complete inventory for future glacial lakes in High Mountain Asia by computing the subglacial bedrock for ~100 000 glaciers and estimating overdeepening area, volume and impact hazard for the larger potential lakes. We detect 25 285 overdeepenings larger than 104 m2 with a volume of 99.1 ± 28.6 km3 covering an area of 2683 ± 773.8 km2. For the 2700 overdeepenings larger than 105 m2, we assess the lake predisposition for mass-movement impacts that could trigger a GLOF by estimating the hazard of material detaching from surrounding slopes. Our findings indicate a shift in lake area, volume and GLOF hazard from the southwestern Himalayan region toward the Karakoram. The results of this study can be used for anticipating emerging threats and potentials connected to glacial lakes and as a basis for further studies at suspected GLOF hazard hotspots.

33 citations