scispace - formally typeset
Search or ask a question
Author

Meina Neumann-Schaal

Bio: Meina Neumann-Schaal is an academic researcher from Leibniz Association. The author has contributed to research in topics: Sulfolobus solfataricus & Amino acid. The author has an hindex of 17, co-authored 45 publications receiving 664 citations. Previous affiliations of Meina Neumann-Schaal include University of Potsdam & Deutsche Sammlung von Mikroorganismen und Zellkulturen.

Papers
More filters
Journal ArticleDOI
TL;DR: The new EnzymeDetector combines BRENDA enzyme annotations with protein and genome databases for the detection of eukaryotic and prokaryotic enzymes.
Abstract: The BRENDA enzyme database (https://www.brenda-enzymes.org), established in 1987, has evolved into the main collection of functional enzyme and metabolism data. In 2018, BRENDA was selected as an ELIXIR Core Data Resource. BRENDA provides reliable data, continuous curation and updates of classified enzymes, and the integration of newly discovered enzymes. The main part contains >5 million data for ∼90 000 enzymes from ∼13 000 organisms, manually extracted from ∼157 000 primary literature references, combined with information of text and data mining, data integration, and prediction algorithms. Supplements comprise disease-related data, protein sequences, 3D structures, genome annotations, ligand information, taxonomic, bibliographic, and kinetic data. BRENDA offers an easy access to enzyme information from quick to advanced searches, text- and structured-based queries for enzyme-ligand interactions, word maps, and visualization of enzyme data. The BRENDA Pathway Maps are completely revised and updated for an enhanced interactive and intuitive usability. The new design of the Enzyme Summary Page provides an improved access to each individual enzyme. A new protein structure 3D viewer was integrated. The prediction of the intracellular localization of eukaryotic enzymes has been implemented. The new EnzymeDetector combines BRENDA enzyme annotations with protein and genome databases for the detection of eukaryotic and prokaryotic enzymes.

243 citations

Journal ArticleDOI
TL;DR: It is demonstrated that colonization of mice with a member of the genus Prevotella, which has been previously associated to colitis in mice, exacerbates intestinal inflammation and potential systemic autoimmunity.

178 citations

Journal ArticleDOI
TL;DR: The current knowledge of the metabolic principles of energy generation by C. difficile and the underlying gene regulatory scenarios are described, including potentially the NADH-responsive regulator Rex.
Abstract: Strains of Clostridioides difficile cause detrimental diarrheas with thousands of deaths worldwide. The infection process by the Gram-positive, strictly anaerobic gut bacterium is directly related to its unique metabolism, using multiple Stickland-type amino acid fermentation reactions coupled to Rnf complex-mediated sodium/proton gradient formation for ATP generation. Major pathways utilize phenylalanine, leucine, glycine and proline with the formation of 3-phenylproprionate, isocaproate, butyrate, 5-methylcaproate, valerate and 5-aminovalerate. In parallel a versatile sugar catabolism including pyruvate formate-lyase as a central enzyme and an incomplete tricarboxylic acid cycle to prevent unnecessary NADH formation completes the picture. However, a complex gene regulatory network that carefully mediates the continuous adaptation of this metabolism to changing environmental conditions is only partially elucidated. It involves the pleiotropic regulators CodY and SigH, the known carbon metabolism regulator CcpA, the proline regulator PrdR, the iron regulator Fur, the small regulatory RNA CsrA and potentially the NADH-responsive regulator Rex. Here, we describe the current knowledge of the metabolic principles of energy generation by C. difficile and the underlying gene regulatory scenarios.

93 citations

Journal ArticleDOI
TL;DR: Since in all media compositions, more than one substrate was available as a suitable carbon source, availability of different carbon sources and their metabolic fate appears to be the key factor for toxin formation.
Abstract: Clostridium difficile is one of the major nosocomial threats causing severe gastrointestinal infections. Compared to the well documented clinical symptoms, little is known about the processes in the bacterial cell like the regulation and activity of metabolic pathways. In this study, we present time-resolved and global data of extracellular substrates and products. In a second part, we focus on the correlation of fermentation products and substrate uptake with toxin production. Formation of different fermentation products during growth in a comparison between the two different media in a global approach was studied using non-targeted gas chromatography–mass spectrometry (GC-MS) based analysis. During cultivation in a casamino acids medium and minimal medium, the clinical isolate C. difficile 630Δerm showed major differences in amino acid utilization: In casamino acids medium, C. difficile preferred proline, leucine and cysteine as carbon and energy sources while glutamate and lysine were not or hardly used. In contrast, proline and leucine were consumed at a significantly later stage in minimal medium. Due to the more complex substrate mixture more fermentation products were detectable in the casamino acids medium, accompanied by major changes in the ratios between oxidative and reductive Stickland products. Different glucose consumption dynamics were observed in presence of either casamino acids or the minimal set of amino acids, accompanied by major changes in butanoate formation. This was associated with a variation in both the toxin yield and a change in the ratio of toxin A to toxin B. Since in all media compositions, more than one substrate was available as a suitable carbon source, availability of different carbon sources and their metabolic fate appears to be the key factor for toxin formation.

87 citations

Journal ArticleDOI
TL;DR: The results show that, although there are multiple genes and organisms with the potential to perform each degradation step, only a few are active during biodegradation.
Abstract: The degradation of synthetic polymers by marine microorganisms is not as well understood as the degradation of plastics in soil and compost. Here, we use metagenomics, metatranscriptomics and metaproteomics to study the biodegradation of an aromatic-aliphatic copolyester blend by a marine microbial enrichment culture. The culture can use the plastic film as the sole carbon source, reaching maximum conversion to CO2 and biomass in around 15 days. The consortium degrades the polymer synergistically, with different degradation steps being performed by different community members. We identify six putative PETase-like enzymes and four putative MHETase-like enzymes, with the potential to degrade aliphatic-aromatic polymers and their degradation products, respectively. Our results show that, although there are multiple genes and organisms with the potential to perform each degradation step, only a few are active during biodegradation. The degradation of plastics by marine microbes is not well understood. Here, Meyer-Cifuentes et al. use a meta-omics approach to study the biodegradation of an aromatic-aliphatic copolyester blend by a marine microbial enrichment culture, showing that different degradation steps are performed by different microorganisms.

87 citations


Cited by
More filters
01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

01 Jan 2011
TL;DR: The sheer volume and scope of data posed by this flood of data pose a significant challenge to the development of efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data.
Abstract: Rapid improvements in sequencing and array-based platforms are resulting in a flood of diverse genome-wide data, including data from exome and whole-genome sequencing, epigenetic surveys, expression profiling of coding and noncoding RNAs, single nucleotide polymorphism (SNP) and copy number profiling, and functional assays. Analysis of these large, diverse data sets holds the promise of a more comprehensive understanding of the genome and its relation to human disease. Experienced and knowledgeable human review is an essential component of this process, complementing computational approaches. This calls for efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data. However, the sheer volume and scope of data pose a significant challenge to the development of such tools.

2,187 citations

01 Jan 2011
TL;DR: In this paper, the authors colonized GF mice with mouse microbiota (MMb) or human microbiota (HMb) to determine whether small intestinal immune maturation depends on a coevolved host-specific microbiota.
Abstract: Gut microbial induction of host immune maturation exemplifies host-microbe mutualism. We colonized germ-free (GF) mice with mouse microbiota (MMb) or human microbiota (HMb) to determine whether small intestinal immune maturation depends on a coevolved host-specific microbiota. Gut bacterial numbers and phylum abundance were similar in MMb and HMb mice, but bacterial species differed, especially the Firmicutes. HMb mouse intestines had low levels of CD4(+) and CD8(+) T cells, few proliferating T cells, few dendritic cells, and low antimicrobial peptide expression--all characteristics of GF mice. Rat microbiota also failed to fully expand intestinal T cell numbers in mice. Colonizing GF or HMb mice with mouse-segmented filamentous bacteria (SFB) partially restored T cell numbers, suggesting that SFB and other MMb organisms are required for full immune maturation in mice. Importantly, MMb conferred better protection against Salmonella infection than HMb. A host-specific microbiota appears to be critical for a healthy immune system.

768 citations

Journal ArticleDOI
TL;DR: Findings show that evolutionary events based on horizontal gene transfer occur within an ongoing CDI and contribute to the adaptation of the species by the introduction of new genes into the genomes.
Abstract: Clostridioides difficile infections (CDI) have emerged over the past decade causing symptoms that range from mild, antibiotic-associated diarrhea (AAD) to life-threatening toxic megacolon. In this study, we describe a multiple and isochronal (mixed) CDI caused by the isolates DSM 27638, DSM 27639 and DSM 27640 that already initially showed different morphotypes on solid media. The three isolates belonging to the ribotypes (RT) 012 (DSM 27639) and 027 (DSM 27638 and DSM 27640) were phenotypically characterized and high quality closed genome sequences were generated. The genomes were compared with seven reference strains including three strains of the RT 027, two of the RT 017, and one of the RT 078 as well as a multi-resistant RT 012 strain. The analysis of horizontal gene transfer events revealed gene acquisition incidents that sort the strains within the time line of the spread of their RTs within Germany. We could show as well that horizontal gene transfer between the members of different RTs occurred within this multiple infection. In addition, acquisition and exchange of virulence-related features including antibiotic resistance genes were observed. Analysis of the two genomes assigned to RT 027 revealed three single nucleotide polymorphisms (SNPs) and apparently a regional genome modification within the flagellar switch that regulates the fli operon. Our findings show that (i) evolutionary events based on horizontal gene transfer occur within an ongoing CDI and contribute to the adaptation of the species by the introduction of new genes into the genomes, (ii) within a multiple infection of a single patient the exchange of genetic material was responsible for a much higher genome variation than the observed SNPs.

373 citations

30 Mar 2001
TL;DR: This article corrects the article on p. 217 in vol.
Abstract: [This corrects the article on p. 217 in vol. 41.].

322 citations