scispace - formally typeset
Search or ask a question
Author

Mellissa Jess

Bio: Mellissa Jess is an academic researcher. The author has contributed to research in topics: Ectotherm & Environmental change. The author has an hindex of 1, co-authored 1 publications receiving 890 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It is concluded that ectotherms sharing vulnerability traits seem concentrated in lowland tropical forests and their vulnerability may be exacerbated by negative biotic interactions, as genetic and selective data are scant.
Abstract: A recently developed integrative framework proposes that the vulnerability of a species to environmental change depends on the species' exposure and sensitivity to environmental change, its resilience to perturbations and its potential to adapt to change. These vulnerability criteria require behavioural, physiological and genetic data. With this information in hand, biologists can predict organisms most at risk from environmental change. Biologists and managers can then target organisms and habitats most at risk. Unfortunately, the required data (e.g. optimal physiological temperatures) are rarely available. Here, we evaluate the reliability of potential proxies (e.g. critical temperatures) that are often available for some groups. Several proxies for ectotherms are promising, but analogous ones for endotherms are lacking. We also develop a simple graphical model of how behavioural thermoregulation, acclimation and adaptation may interact to influence vulnerability over time. After considering this model together with the proxies available for physiological sensitivity to climate change, we conclude that ectotherms sharing vulnerability traits seem concentrated in lowland tropical forests. Their vulnerability may be exacerbated by negative biotic interactions. Whether tropical forest (or other) species can adapt to warming environments is unclear, as genetic and selective data are scant. Nevertheless, the prospects for tropical forest ectotherms appear grim.

1,077 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is found that most terrestrial ectotherms are insufficiently tolerant of high temperatures to survive the warmest potential body temperatures in exposed habitats and must therefore thermoregulate by using shade, burrows, or evaporative cooling and show why heat-tolerance limits are relatively invariant in comparison with cold limits.
Abstract: Physiological thermal-tolerance limits of terrestrial ectotherms often exceed local air temperatures, implying a high degree of thermal safety (an excess of warm or cold thermal tolerance). However, air temperatures can be very different from the equilibrium body temperature of an individual ectotherm. Here, we compile thermal-tolerance limits of ectotherms across a wide range of latitudes and elevations and compare these thermal limits both to air and to operative body temperatures (theoretically equilibrated body temperatures) of small ectothermic animals during the warmest and coldest times of the year. We show that extreme operative body temperatures in exposed habitats match or exceed the physiological thermal limits of most ectotherms. Therefore, contrary to previous findings using air temperatures, most ectotherms do not have a physiological thermal-safety margin. They must therefore rely on behavior to avoid overheating during the warmest times, especially in the lowland tropics. Likewise, species living at temperate latitudes and in alpine habitats must retreat to avoid lethal cold exposure. Behavioral plasticity of habitat use and the energetic consequences of thermal retreats are therefore critical aspects of species’ vulnerability to climate warming and extreme events.

874 citations

Journal ArticleDOI
TL;DR: In this article, three main approaches used to derive these currencies (correlative, mechanistic and trait-based) and their associated data requirements, spatial and temporal scales of application and modelling methods are described.
Abstract: The effects of climate change on biodiversity are increasingly well documented, and many methods have been developed to assess species' vulnerability to climatic changes, both ongoing and projected in the coming decades. To minimize global biodiversity losses, conservationists need to identify those species that are likely to be most vulnerable to the impacts of climate change. In this Review, we summarize different currencies used for assessing species' climate change vulnerability. We describe three main approaches used to derive these currencies (correlative, mechanistic and trait-based), and their associated data requirements, spatial and temporal scales of application and modelling methods. We identify strengths and weaknesses of the approaches and highlight the sources of uncertainty inherent in each method that limit projection reliability. Finally, we provide guidance for conservation practitioners in selecting the most appropriate approach(es) for their planning needs and highlight priority areas for further assessments.

808 citations

Journal ArticleDOI
TL;DR: Research synthesizing the current state of knowledge about physiological plasticity in ectotherms shows that freshwater and marine animals seem to have a greater capacity for acclimation than terrestrial ones.
Abstract: Acclimation, a form of physiological plasticity, is the capacity for organisms to physiologically adjust to temperature variation. Such changes can potentially reduce climate change impacts on animal populations. Research synthesizing the current state of knowledge about physiological plasticity in ectotherms shows that freshwater and marine animals seem to have a greater capacity for acclimation than terrestrial ones.

641 citations

Journal ArticleDOI
TL;DR: This analysis indicates that behavioural and evolutionary mechanisms will be critical in allowing ectotherms to buffer themselves from extreme temperatures, and proposes that limited potential for behavioural plasticity favours the evolution of greater plasticity in physiological traits, consistent with the ‘Bogert effect’.
Abstract: Global warming is increasing the overheating risk for many organisms, though the potential for plasticity in thermal tolerance to mitigate this risk is largely unknown. In part, this shortcoming stems from a lack of knowledge about global and taxonomic patterns of variation in tolerance plasticity. To address this critical issue, we test leading hypotheses for broad-scale variation in ectotherm tolerance plasticity using a dataset that includes vertebrate and invertebrate taxa from terrestrial, freshwater and marine habitats. Contrary to expectation, plasticity in heat tolerance was unrelated to latitude or thermal seasonality. However, plasticity in cold tolerance is associated with thermal seasonality in some habitat types. In addition, aquatic taxa have approximately twice the plasticity of terrestrial taxa. Based on the observed patterns of variation in tolerance plasticity, we propose that limited potential for behavioural plasticity (i.e. behavioural thermoregulation) favours the evolution of greater plasticity in physiological traits, consistent with the ‘Bogert effect’. Finally, we find that all ectotherms have relatively low acclimation in thermal tolerance and demonstrate that overheating risk will be minimally reduced by acclimation in even the most plastic groups. Our analysis indicates that behavioural and evolutionary mechanisms will be critical in allowing ectotherms to buffer themselves from extreme temperatures.

538 citations

Journal ArticleDOI
TL;DR: Findings point to many terrestrial ectotherms having a limited potential to change their thermal limits particularly within the context of an average predicted temperature increase of 2–4 °C for mid-latitude populations over the next few decades.
Abstract: Summary 1. Terrestrial ectotherms are likely to face increased periods of heat stress as mean temperatures and temperature variability increase over the next few decades. Here, we consider the extent to which changes in upper thermal limits, through plasticity or evolution, might be constrained, and we survey insect and reptile data to identify groups likely to be particularly susceptible to thermal stress. 2. Plastic changes increase thermal limits in many terrestrial ectotherms, but tend to have less effect on upper limits than lower limits. 3. Although comparisons across insect species have normally not taken into account the potential for plastic responses, mid-latitude species seem most prone to experience heat stress now and into the future, consistent with data from lizards and other groups. 4. Evolutionary adaptive potential has only been measured for some species; there is likely to be genetic variation for heat responses in populations, but selection and heritability experiments suggest that upper thermal limits may not increase much. 5. Although related species can differ by several degrees in their upper thermal limits, there is strong phylogenetic signal for upper limits. If these reflect evolutionary constraints, substantial molecular changes may be required to increase upper thermal limits. 6. Findings point to many terrestrial ectotherms having a limited potential to change their thermal limits particularly within the context of an average predicted temperature increase of 2–4 °C for mid-latitude populations over the next few decades.

522 citations