scispace - formally typeset
Search or ask a question
Author

Meng-Hiot Lim

Other affiliations: University of Missouri
Bio: Meng-Hiot Lim is an academic researcher from Nanyang Technological University. The author has contributed to research in topics: Memetic algorithm & Evolutionary algorithm. The author has an hindex of 26, co-authored 109 publications receiving 3971 citations. Previous affiliations of Meng-Hiot Lim include University of Missouri.


Papers
More filters
Book
30 May 2013
TL;DR: This special issue includes eight original works that detail the further developments of ELMs in theories, applications, and hardware implementation.
Abstract: This special issue includes eight original works that detail the further developments of ELMs in theories, applications, and hardware implementation. In "Representational Learning with ELMs for Big Data," Liyanaarachchi Lekamalage Chamara Kasun, Hongming Zhou, Guang-Bin Huang, and Chi Man Vong propose using the ELM as an auto-encoder for learning feature representations using singular values. In "A Secure and Practical Mechanism for Outsourcing ELMs in Cloud Computing," Jiarun Lin, Jianping Yin, Zhiping Cai, Qiang Liu, Kuan Li, and Victor C.M. Leung propose a method for handling large data applications by outsourcing to the cloud that would dramatically reduce ELM training time. In "ELM-Guided Memetic Computation for Vehicle Routing," Liang Feng, Yew-Soon Ong, and Meng-Hiot Lim consider the ELM as an engine for automating the encapsulation of knowledge memes from past problem-solving experiences. In "ELMVIS: A Nonlinear Visualization Technique Using Random Permutations and ELMs," Anton Akusok, Amaury Lendasse, Rui Nian, and Yoan Miche propose an ELM method for data visualization based on random permutations to map original data and their corresponding visualization points. In "Combining ELMs with Random Projections," Paolo Gastaldo, Rodolfo Zunino, Erik Cambria, and Sergio Decherchi analyze the relationships between ELM feature-mapping schemas and the paradigm of random projections. In "Reduced ELMs for Causal Relation Extraction from Unstructured Text," Xuefeng Yang and Kezhi Mao propose combining ELMs with neuron selection to optimize the neural network architecture and improve the ELM ensemble's computational efficiency. In "A System for Signature Verification Based on Horizontal and Vertical Components in Hand Gestures," Beom-Seok Oh, Jehyoung Jeon, Kar-Ann Toh, Andrew Beng Jin Teoh, and Jaihie Kim propose a novel paradigm for hand signature biometry for touchless applications without the need for handheld devices. Finally, in "An Adaptive and Iterative Online Sequential ELM-Based Multi-Degree-of-Freedom Gesture Recognition System," Hanchao Yu, Yiqiang Chen, Junfa Liu, and Guang-Bin Huang propose an online sequential ELM-based efficient gesture recognition algorithm for touchless human-machine interaction.

705 citations

Journal ArticleDOI
01 Feb 2006
TL;DR: This paper presents a classification of memes adaptation in adaptive MAs on the basis of the mechanism used and the level of historical knowledge on the memes employed, and the asymptotic convergence properties of the adaptive M as considered are analyzed.
Abstract: Adaptation of parameters and operators represents one of the recent most important and promising areas of research in evolutionary computations; it is a form of designing self-configuring algorithms that acclimatize to suit the problem in hand. Here, our interests are on a recent breed of hybrid evolutionary algorithms typically known as adaptive memetic algorithms (MAs). One unique feature of adaptive MAs is the choice of local search methods or memes and recent studies have shown that this choice significantly affects the performances of problem searches. In this paper, we present a classification of memes adaptation in adaptive MAs on the basis of the mechanism used and the level of historical knowledge on the memes employed. Then the asymptotic convergence properties of the adaptive MAs considered are analyzed according to the classification. Subsequently, empirical studies on representatives of adaptive MAs for different type-level meme adaptations using continuous benchmark problems indicate that global-level adaptive MAs exhibit better search performances. Finally we conclude with some promising research directions in the area.

521 citations

Journal ArticleDOI
TL;DR: A comprehensive multi-facet survey of recent research in memetic computation is presented and includes simple hybrids, adaptive hybrids and memetic automaton.
Abstract: Memetic computation is a paradigm that uses the notion of meme(s) as units of information encoded in computational representations for the purpose of problem-solving. It covers a plethora of potentially rich meme-inspired computing methodologies, frameworks and operational algorithms including simple hybrids, adaptive hybrids and memetic automaton. In this paper, a comprehensive multi-facet survey of recent research in memetic computation is presented.

485 citations

Journal ArticleDOI
TL;DR: A novel probabilistic memetic framework is presented that models MAs as a process involving the decision of embracing the separate actions of evolution or individual learning and analyzing the probability of each process in locating the global optimum.
Abstract: Memetic algorithms (MAs) represent one of the recent growing areas in evolutionary algorithm (EA) research. The term MAs is now widely used as a synergy of evolutionary or any population-based approach with separate individual learning or local improvement procedures for problem search. Quite often, MAs are also referred to in the literature as Baldwinian EAs, Lamarckian EAs, cultural algorithms, or genetic local searches. In the last decade, MAs have been demonstrated to converge to high-quality solutions more efficiently than their conventional counterparts on a wide range of real-world problems. Despite the success and surge in interests on MAs, many of the successful MAs reported have been crafted to suit problems in very specific domains. Given the restricted theoretical knowledge available in the field of MAs and the limited progress made on formal MA frameworks, we present a novel probabilistic memetic framework that models MAs as a process involving the decision of embracing the separate actions of evolution or individual learning and analyzing the probability of each process in locating the global optimum. Further, the framework balances evolution and individual learning by governing the learning intensity of each individual according to the theoretical upper bound derived while the search progresses. Theoretical and empirical studies on representative benchmark problems commonly used in the literature are presented to demonstrate the characteristics and efficacies of the probabilistic memetic framework. Further, comparisons to recent state-of-the-art evolutionary algorithms, memetic algorithms, and hybrid evolutionary-local search demonstrate that the proposed framework yields robust and improved search performance.

222 citations

Journal ArticleDOI
TL;DR: A study on evolutionary memetic computing paradigm that is capable of learning and evolving knowledge meme that traverses different but related problem domains, for greater search efficiency is presented.
Abstract: In recent decades, a plethora of dedicated evolutionary algorithms (EAs) have been crafted to solve domain-specific complex problems more efficiently. Many advanced EAs have relied on the incorporation of domain-specific knowledge as inductive biases that is deemed to fit the problem of interest well. As such, the embedment of domain knowledge about the underlying problem within the search algorithms is becoming an established mode of enhancing evolutionary search performance. In this paper, we present a study on evolutionary memetic computing paradigm that is capable of learning and evolving knowledge meme that traverses different but related problem domains, for greater search efficiency. Focusing on combinatorial optimization as the area of study, a realization of the proposed approach is investigated on two NP-hard problem domains (i.e., capacitated vehicle routing problem and capacitated arc routing problem). Empirical studies on well-established routing problems and their respective state-of-the-art optimization solvers are presented to study the potential benefits of leveraging knowledge memes that are learned from different but related problem domains on future evolutionary search.

145 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A new learning algorithm called ELM is proposed for feedforward neural networks (SLFNs) which randomly chooses hidden nodes and analytically determines the output weights of SLFNs which tends to provide good generalization performance at extremely fast learning speed.

10,217 citations

Proceedings ArticleDOI
25 Jul 2004
TL;DR: A new learning algorithm called extreme learning machine (ELM) for single-hidden layer feedforward neural networks (SLFNs) which randomly chooses the input weights and analytically determines the output weights of SLFNs is proposed.
Abstract: It is clear that the learning speed of feedforward neural networks is in general far slower than required and it has been a major bottleneck in their applications for past decades. Two key reasons behind may be: 1) the slow gradient-based learning algorithms are extensively used to train neural networks, and 2) all the parameters of the networks are tuned iteratively by using such learning algorithms. Unlike these traditional implementations, this paper proposes a new learning algorithm called extreme learning machine (ELM) for single-hidden layer feedforward neural networks (SLFNs) which randomly chooses the input weights and analytically determines the output weights of SLFNs. In theory, this algorithm tends to provide the best generalization performance at extremely fast learning speed. The experimental results based on real-world benchmarking function approximation and classification problems including large complex applications show that the new algorithm can produce best generalization performance in some cases and can learn much faster than traditional popular learning algorithms for feedforward neural networks.

3,643 citations

Journal ArticleDOI
TL;DR: A survey on Extreme learning machine (ELM) and its variants, especially on (1) batch learning mode of ELM, (2) fully complex ELm, (3) online sequential ELM; and (4) incremental ELM and (5) ensemble ofELM.
Abstract: Computational intelligence techniques have been used in wide applications. Out of numerous computational intelligence techniques, neural networks and support vector machines (SVMs) have been playing the dominant roles. However, it is known that both neural networks and SVMs face some challenging issues such as: (1) slow learning speed, (2) trivial human intervene, and/or (3) poor computational scalability. Extreme learning machine (ELM) as emergent technology which overcomes some challenges faced by other techniques has recently attracted the attention from more and more researchers. ELM works for generalized single-hidden layer feedforward networks (SLFNs). The essence of ELM is that the hidden layer of SLFNs need not be tuned. Compared with those traditional computational intelligence techniques, ELM provides better generalization performance at a much faster learning speed and with least human intervene. This paper gives a survey on ELM and its variants, especially on (1) batch learning mode of ELM, (2) fully complex ELM, (3) online sequential ELM, (4) incremental ELM, and (5) ensemble of ELM.

1,767 citations

Journal ArticleDOI
TL;DR: The applications of deep learning in machine health monitoring systems are reviewed mainly from the following aspects: Auto-encoder and its variants, Restricted Boltzmann Machines, Convolutional Neural Networks, and Recurrent Neural Networks.

1,569 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report the current state of the theoretical research and practical advances on this subject and provide a comprehensive view of these advances in ELM together with its future perspectives.

1,289 citations