scispace - formally typeset
Search or ask a question
Author

Meng Wang

Bio: Meng Wang is an academic researcher from Shandong University. The author has contributed to research in topics: Heterologous expression & Poly ADP ribose polymerase. The author has an hindex of 2, co-authored 2 publications receiving 158 citations.

Papers
More filters
Journal ArticleDOI
Shuantao Liu1, Shuwei Liu1, Mei Wang1, Tiandi Wei1, Chen Meng1, Meng Wang1, Guangmin Xia1 
TL;DR: It is shown here that the wheat SRO has PARP activity; such activity could be manipulated to improve the growth of seedlings exposed to salinity stress by modulating redox homeostasis and maintaining genomic stability.
Abstract: Plant growth inhibition is a common response to salinity. Under saline conditions, Shanrong No. 3 (SR3), a bread wheat (Triticum aestivum) introgression line, performs better than its parent wheat variety Jinan 177 (JN177) with respect to both seedling growth and abiotic stress tolerance. Furthermore, the endogenous reactive oxygen species (ROS) was also elevated in SR3 relative to JN177. The SR3 allele of sro1, a gene encoding a poly(ADP ribose) polymerase (PARP) domain protein, was identified to be crucial for both aspects of its superior performance. Unlike RADICAL-INDUCED CELL DEATH1 and other Arabidopsis thaliana SIMILAR TO RCD-ONE (SRO) proteins, sro1 has PARP activity. Both the overexpression of Ta-sro1 in wheat and its heterologous expression in Arabidopsis promote the accumulation of ROS, mainly by enhancing the activity of NADPH oxidase and the expression of NAD(P)H dehydrogenase, in conjunction with the suppression of alternative oxidase expression. Moreover, it promotes the activity of ascorbate-GSH cycle enzymes and GSH peroxidase cycle enzymes, which regulate ROS content and cellular redox homeostasis. sro1 is also found to be involved in the maintenance of genomic integrity. We show here that the wheat SRO has PARP activity; such activity could be manipulated to improve the growth of seedlings exposed to salinity stress by modulating redox homeostasis and maintaining genomic stability.

99 citations

Journal ArticleDOI
TL;DR: Methylation changes appear to be a common component of the plant response to stress, and methylation changes triggered by somatic hybridization may contribute to the superior salinity tolerance of SR3.
Abstract: Cytosine methylation is a well recognized epigenetic mark. Here, the methylation status of a salinity-tolerant wheat cultivar (cv. SR3, derived from a somatic hybridization event) and its progenitor parent (cv. JN177) was explored both globally and within a set of 24 genes responsive to salinity stress. A further comparison was made between DNA extracted from plants grown under control conditions and when challenged by salinity stress. The SR3 and JN177 genomes differed with respect to their global methylation level, and methylation levels were reduced by exposure to salinity stress. We found the genetic stress- (triggered by a combination of different genomes in somatic hybridization) induced methylation pattern of 13 loci in non-stressed SR3; the same 13 loci were found to undergo methylation in salinity-stressed JN177. For the salinity-responsive genes, SR3 and JN177 also showed different methylation modifications. C methylation polymorphisms induced by salinity stress were present in both the promoter and coding regions of some of the 24 selected genes, but only the former were associated with changes in transcript abundance. The expression of both TaFLS1 (encoding a flavonol synthase) and TaWRSI5 (encoding a Bowman-Birk-type protease inhibitor), which showed both a different expression and a different DNA methylation level between SR3 and JN177, enhanced the salinity tolerance of Arabidopsis thaliana. C methylation changes appear to be a common component of the plant response to stress, and methylation changes triggered by somatic hybridization may contribute to the superior salinity tolerance of SR3.

98 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An overview of current knowledge about homeostasis regulation of ROS in crop plants is presented, and the essential proteins that are involved in abiotic stress tolerance of crop plants through ROS regulation are summarized.
Abstract: Abiotic stresses such as drought, cold, salt and heat cause reduction of plant growth and loss of crop yield worldwide. Reactive oxygen species (ROS) including hydrogen peroxide (H2O2), superoxide anions (O2•‾), hydroxyl radical (OH•) and singlet oxygen (1O2) are by-products of physiological metabolisms, and are precisely controlled by enzymatic and non-enzymatic antioxidant defense systems. ROS are significantly accumulated under abiotic stress conditions, which cause oxidative damage and eventually resulting in cell death. Recently, ROS have been also recognized as key players in the complex signaling network of plants stress responses. The involvement of ROS in signal transduction implies that there must be coordinated function of regulation networks to maintain ROS at non-toxic levels in a delicate balancing act between ROS production, involving ROS generating enzymes and the unavoidable production of ROS during basic cellular metabolism, and ROS-scavenging pathways. Increasing evidence showed that ROS play crucial roles in abiotic stress responses of crop plants for the activation of stress-response and defense pathways. More importantly, manipulating ROS levels provides an opportunity to enhance stress tolerances of crop plants under a variety of unfavorable environmental conditions. This review presents an overview of current knowledge about homeostasis regulation of ROS in crop plants. In particular, we summarize the essential proteins that are involved in abiotic stress tolerance of crop plants through ROS regulation. Finally, the challenges toward the improvement of abiotic stress tolerance through ROS regulation in crops are discussed.

745 citations

Journal ArticleDOI
TL;DR: This review describes recent progress in deciphering the mechanisms controlling ion homeostasis, cell activity responses, and epigenetic regulation in plants under salt stress and highlights research areas that require further research to reveal new determinants of salt tolerance in plants.
Abstract: Contents Summary 523 I. Introduction 523 II. Sensing salt stress 524 III. Ion homeostasis regulation 524 IV. Metabolite and cell activity responses to salt stress 527 V. Conclusions and perspectives 532 Acknowledgements 533 References 533 SUMMARY: Excess soluble salts in soil (saline soils) are harmful to most plants. Salt imposes osmotic, ionic, and secondary stresses on plants. Over the past two decades, many determinants of salt tolerance and their regulatory mechanisms have been identified and characterized using molecular genetics and genomics approaches. This review describes recent progress in deciphering the mechanisms controlling ion homeostasis, cell activity responses, and epigenetic regulation in plants under salt stress. Finally, we highlight research areas that require further research to reveal new determinants of salt tolerance in plants.

703 citations

Journal ArticleDOI

692 citations

Journal ArticleDOI
TL;DR: This review provides a comprehensive summary of the mechanisms of salt stress responses in plants, including salt stress-triggered physiological responses, oxidative stress, salt stress sensing and signaling pathways, organellar stress, ion homeostasis, hormonal and gene expression regulation, metabolic changes, as well as salt tolerance mechanisms in halophytes.
Abstract: Soil salinity is a major environmental stress that restricts the growth and yield of crops. Understanding the physiological, metabolic, and biochemical responses of plants to salt stress and mining the salt tolerance-associated genetic resource in nature will be extremely important for us to cultivate salt-tolerant crops. In this review, we provide a comprehensive summary of the mechanisms of salt stress responses in plants, including salt stress-triggered physiological responses, oxidative stress, salt stress sensing and signaling pathways, organellar stress, ion homeostasis, hormonal and gene expression regulation, metabolic changes, as well as salt tolerance mechanisms in halophytes. Important questions regarding salt tolerance that need to be addressed in the future are discussed.

416 citations

Journal ArticleDOI
TL;DR: Recent progress on the regulation and alteration of histone modification in response to the abiotic stresses, drought, high-salinity, heat, and cold in plants is summarized.
Abstract: Chromatin regulation is essential to regulate genes and genome activities. In plants, the alteration of histone modification and DNA methylation are coordinated with changes in the expression of stress-responsive genes to adapt to environmental changes. Several chromatin regulators have been shown to be involved in the regulation of stress-responsive gene networks under abiotic stress conditions. Specific histone modification sites and the histone modifiers that regulate key stress-responsive genes have been identified by genetic and biochemical approaches, revealing the importance of chromatin regulation in plant stress responses. Recent studies have also suggested that histone modification plays an important role in plant stress memory. In this review, we summarize recent progress on the regulation and alteration of histone modification (acetylation, methylation, phosphorylation, and SUMOylation) in response to the abiotic stresses, drought, high-salinity, heat, and cold in plants.

326 citations