scispace - formally typeset
Search or ask a question
Author

Meng Xiao

Bio: Meng Xiao is an academic researcher from Wuhan University. The author has contributed to research in topics: Photonic crystal & Physics. The author has an hindex of 34, co-authored 112 publications receiving 4866 citations. Previous affiliations of Meng Xiao include Hong Kong University of Science and Technology & Stanford University.


Papers
More filters
Journal ArticleDOI
01 Apr 2019
TL;DR: In this paper, the essential physical concepts that underpin various classes of topological phenomena realized in acoustic and mechanical systems are introduced, including Dirac points, the quantum Hall, quantum spin Hall and valley Hall effects, Floquet topological phases, 3D gapless states and Weyl crystals.
Abstract: The study of classical wave physics has been reinvigorated by incorporating the concept of the geometric phase, which has its roots in optics, and topological notions that were previously explored in condensed matter physics. Recently, sound waves and a variety of mechanical systems have emerged as excellent platforms that exemplify the universality and diversity of topological phases. In this Review, we introduce the essential physical concepts that underpin various classes of topological phenomena realized in acoustic and mechanical systems: Dirac points, the quantum Hall, quantum spin Hall and valley Hall effects, Floquet topological phases, 3D gapless states and Weyl crystals. This Review describes topological phenomena that can be realized in acoustic and mechanical systems. Methods of symmetry breaking are described, along with the consequences and rich phenomena that emerge.

535 citations

Journal ArticleDOI
TL;DR: The behavior of sound waves in phononic crystals is similar to that of electrons in solids as mentioned in this paper, and phononic band inversion and Zak phases have been measured for a 1D phononic system.
Abstract: The behaviour of sound waves in phononic crystals—metamaterials with spatially varying acoustic characteristics—is similar to that of electrons in solids. Now, phononic band inversion and Zak phases have been measured for a 1D phononic system.

525 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that inversion symmetry breaking can be used to create acoustic analogues of the topological Haldane model and an effective gauge flux in a reduced two-dimensional system by engineering interlayer couplings.
Abstract: Realizing non-trivial topological effects is challenging in acoustic systems. It is now shown that inversion symmetry breaking can be used to create acoustic analogues of the topological Haldane model. Following the discovery of the quantum Hall effect1,2 and topological insulators3,4, the topological properties of classical waves began to draw attention5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21. Topologically non-trivial bands characterized by non-zero Chern numbers are realized through either the breaking of time-reversal symmetry using an external magnetic field5,6,7,15,16 or dynamic modulation8,17. Owing to the absence of a Faraday-like effect, the breaking of time-reversal symmetry in an acoustic system is commonly realized with moving background fluids20,22, which drastically increases the engineering complexity. Here we show that we can realize effective inversion symmetry breaking and create an effective gauge flux in a reduced two-dimensional system by engineering interlayer couplings, achieving an acoustic analogue of the topological Haldane model2,23. We show that the synthetic gauge flux is closely related to Weyl points24,25,26 in the three-dimensional band structure and the system supports chiral edge states for fixed values of kz.

362 citations

Journal ArticleDOI
TL;DR: In this article, the relationship between surface scattering properties, the bulk band properties, and the formation of interface states is investigated, which can enable the design of systems with interface states in a rational manner.
Abstract: Surface impedance is an important concept in classical wave systems such as photonic crystals (PCs). For example, the condition of an interface state formation in the interfacial region of two different one-dimensional PCs is simply Z_SL +Z_SR=0, where Z_SL (Z_SR)is the surface impedance of the semi-infinite PC on the left- (right-) hand side of the interface. Here, we also show a rigorous relation between the surface impedance of a one-dimensional PC and its bulk properties through the geometrical (Zak) phases of the bulk bands, which can be used to determine the existence or non-existence of interface states at the interface of the two PCs in a particular band gap. Our results hold for any PCs with inversion symmetry, independent of the frequency of the gap and the symmetry point where the gap lies in the Brillouin Zone. Our results provide new insights on the relationship between surface scattering properties, the bulk band properties and the formation of interface states, which in turn can enable the design of systems with interface states in a rational manner.

296 citations

Journal ArticleDOI
20 Nov 2018
TL;DR: In this article, the basic concepts of synthetic dimension in photonics are discussed, and various approaches toward demonstrating such synthetic dimensions for fundamental physics and potential applications are highlighted, as well as the various approaches to demonstrate such synthetic dimension for physics applications.
Abstract: The physics of a photonic structure is commonly described in terms of its apparent geometric dimensionality. On the other hand, with the concept of synthetic dimension, it is in fact possible to explore physics in a space with a dimensionality that is higher as compared to the apparent geometrical dimensionality of the structures. In this review, we discuss the basic concepts of synthetic dimension in photonics, and highlight the various approaches toward demonstrating such synthetic dimensions for fundamental physics and potential applications.

293 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Weyl and Dirac semimetals as discussed by the authors are three-dimensional phases of matter with gapless electronic excitations that are protected by topology and symmetry, and they have generated much recent interest.
Abstract: Weyl and Dirac semimetals are three-dimensional phases of matter with gapless electronic excitations that are protected by topology and symmetry. As three-dimensional analogs of graphene, they have generated much recent interest. Deep connections exist with particle physics models of relativistic chiral fermions, and, despite their gaplessness, to solid-state topological and Chern insulators. Their characteristic electronic properties lead to protected surface states and novel responses to applied electric and magnetic fields. The theoretical foundations of these phases, their proposed realizations in solid-state systems, and recent experiments on candidate materials as well as their relation to other states of matter are reviewed.

3,407 citations

Journal ArticleDOI
TL;DR: Topological photonics is a rapidly emerging field of research in which geometrical and topological ideas are exploited to design and control the behavior of light as mentioned in this paper, which holds great promise for applications.
Abstract: Topological photonics is a rapidly emerging field of research in which geometrical and topological ideas are exploited to design and control the behavior of light. Drawing inspiration from the discovery of the quantum Hall effects and topological insulators in condensed matter, recent advances have shown how to engineer analogous effects also for photons, leading to remarkable phenomena such as the robust unidirectional propagation of light, which hold great promise for applications. Thanks to the flexibility and diversity of photonics systems, this field is also opening up new opportunities to realize exotic topological models and to probe and exploit topological effects in new ways. This article reviews experimental and theoretical developments in topological photonics across a wide range of experimental platforms, including photonic crystals, waveguides, metamaterials, cavities, optomechanics, silicon photonics, and circuit QED. A discussion of how changing the dimensionality and symmetries of photonics systems has allowed for the realization of different topological phases is offered, and progress in understanding the interplay of topology with non-Hermitian effects, such as dissipation, is reviewed. As an exciting perspective, topological photonics can be combined with optical nonlinearities, leading toward new collective phenomena and novel strongly correlated states of light, such as an analog of the fractional quantum Hall effect.

3,052 citations

Journal ArticleDOI
09 Aug 2017-Nature
TL;DR: An alternative sensing scheme is demonstrated, by which the sensitivity of microcavities can be enhanced when operated at non-Hermitian spectral degeneracies known as exceptional points, paves the way for sensors with unprecedented sensitivity.
Abstract: Sensors play an important part in many aspects of daily life such as infrared sensors in home security systems, particle sensors for environmental monitoring and motion sensors in mobile phones. High-quality optical microcavities are prime candidates for sensing applications because of their ability to enhance light-matter interactions in a very confined volume. Examples of such devices include mechanical transducers, magnetometers, single-particle absorption spectrometers, and microcavity sensors for sizing single particles and detecting nanometre-scale objects such as single nanoparticles and atomic ions. Traditionally, a very small perturbation near an optical microcavity introduces either a change in the linewidth or a frequency shift or splitting of a resonance that is proportional to the strength of the perturbation. Here we demonstrate an alternative sensing scheme, by which the sensitivity of microcavities can be enhanced when operated at non-Hermitian spectral degeneracies known as exceptional points. In our experiments, we use two nanoscale scatterers to tune a whispering-gallery-mode micro-toroid cavity, in which light propagates along a concave surface by continuous total internal reflection, in a precise and controlled manner to exceptional points. A target nanoscale object that subsequently enters the evanescent field of the cavity perturbs the system from its exceptional point, leading to frequency splitting. Owing to the complex-square-root topology near an exceptional point, this frequency splitting scales as the square root of the perturbation strength and is therefore larger (for sufficiently small perturbations) than the splitting observed in traditional non-exceptional-point sensing schemes. Our demonstration of exceptional-point-enhanced sensitivity paves the way for sensors with unprecedented sensitivity.

1,403 citations

Journal ArticleDOI
24 Sep 2018-Nature
TL;DR: Monolithically integrated lithium niobate electro-optic modulators that feature a CMOS-compatible drive voltage, support data rates up to 210 gigabits per second and show an on-chip optical loss of less than 0.5 decibels are demonstrated.
Abstract: Electro-optic modulators translate high-speed electronic signals into the optical domain and are critical components in modern telecommunication networks1,2 and microwave-photonic systems3,4. They are also expected to be building blocks for emerging applications such as quantum photonics5,6 and non-reciprocal optics7,8. All of these applications require chip-scale electro-optic modulators that operate at voltages compatible with complementary metal–oxide–semiconductor (CMOS) technology, have ultra-high electro-optic bandwidths and feature very low optical losses. Integrated modulator platforms based on materials such as silicon, indium phosphide or polymers have not yet been able to meet these requirements simultaneously because of the intrinsic limitations of the materials used. On the other hand, lithium niobate electro-optic modulators, the workhorse of the optoelectronic industry for decades9, have been challenging to integrate on-chip because of difficulties in microstructuring lithium niobate. The current generation of lithium niobate modulators are bulky, expensive, limited in bandwidth and require high drive voltages, and thus are unable to reach the full potential of the material. Here we overcome these limitations and demonstrate monolithically integrated lithium niobate electro-optic modulators that feature a CMOS-compatible drive voltage, support data rates up to 210 gigabits per second and show an on-chip optical loss of less than 0.5 decibels. We achieve this by engineering the microwave and photonic circuits to achieve high electro-optical efficiencies, ultra-low optical losses and group-velocity matching simultaneously. Our scalable modulator devices could provide cost-effective, low-power and ultra-high-speed solutions for next-generation optical communication networks and microwave photonic systems. Furthermore, our approach could lead to large-scale ultra-low-loss photonic circuits that are reconfigurable on a picosecond timescale, enabling a wide range of quantum and classical applications5,10,11 including feed-forward photonic quantum computation. Chip-scale lithium niobate electro-optic modulators that rapidly convert electrical to optical signals and use CMOS-compatible voltages could prove useful in optical communication networks, microwave photonic systems and photonic computation.

1,358 citations