scispace - formally typeset
Search or ask a question
Author

Meng Zhang

Bio: Meng Zhang is an academic researcher from Beihang University. The author has contributed to research in topics: Product design & Product lifecycle. The author has an hindex of 10, co-authored 20 publications receiving 2188 citations.

Papers
More filters
Journal ArticleDOI
Fei Tao1, Jiangfeng Cheng1, Qinglin Qi1, Meng Zhang1, He Zhang1, Fangyuan Sui1 
TL;DR: In this paper, a new method for product design, manufacturing, and service driven by digital twin is proposed, and three cases are given to illustrate the future applications of digital twin in three phases of a product respectively.
Abstract: Nowadays, along with the application of new-generation information technologies in industry and manufacturing, the big data-driven manufacturing era is coming. However, although various big data in the entire product lifecycle, including product design, manufacturing, and service, can be obtained, it can be found that the current research on product lifecycle data mainly focuses on physical products rather than virtual models. Besides, due to the lack of convergence between product physical and virtual space, the data in product lifecycle is isolated, fragmented, and stagnant, which is useless for manufacturing enterprises. These problems lead to low level of efficiency, intelligence, sustainability in product design, manufacturing, and service phases. However, physical product data, virtual product data, and connected data that tie physical and virtual product are needed to support product design, manufacturing, and service. Therefore, how to generate and use converged cyber-physical data to better serve product lifecycle, so as to drive product design, manufacturing, and service to be more efficient, smart, and sustainable, is emphasized and investigated based on our previous study on big data in product lifecycle management. In this paper, a new method for product design, manufacturing, and service driven by digital twin is proposed. The detailed application methods and frameworks of digital twin-driven product design, manufacturing, and service are investigated. Furthermore, three cases are given to illustrate the future applications of digital twin in the three phases of a product respectively.

1,571 citations

Journal ArticleDOI
Fei Tao1, Meng Zhang1
TL;DR: A novel concept of digital twin shop-floor (DTS) based on digital twin is explored and its four key components are discussed, including physicalShop-floor, virtual shop- Floor, shop- floor service system, and shop-ground digital twin data.
Abstract: With the developments and applications of the new information technologies, such as cloud computing, Internet of Things, big data, and artificial intelligence, a smart manufacturing era is coming. At the same time, various national manufacturing development strategies have been put forward, such as Industry 4.0 , Industrial Internet , manufacturing based on Cyber-Physical System , and Made in China 2025 . However, one of specific challenges to achieve smart manufacturing with these strategies is how to converge the manufacturing physical world and the virtual world, so as to realize a series of smart operations in the manufacturing process, including smart interconnection, smart interaction, smart control and management, etc. In this context, as a basic unit of manufacturing, shop-floor is required to reach the interaction and convergence between physical and virtual spaces, which is not only the imperative demand of smart manufacturing, but also the evolving trend of itself. Accordingly, a novel concept of digital twin shop-floor (DTS) based on digital twin is explored and its four key components are discussed, including physical shop-floor, virtual shop-floor, shop-floor service system, and shop-floor digital twin data. What is more, the operation mechanisms and implementing methods for DTS are studied and key technologies as well as challenges ahead are investigated, respectively.

741 citations

Journal ArticleDOI
TL;DR: This paper presents a new method for product design based on the digital twin approach, which places emphasis on the analysis of physical data rather than the virtual models and illustrates the application of the proposed DTPD method.
Abstract: With the advent of new generation information technologies in industry and product design, the big data-driven product design era has arrived. However, the big data-driven product design mainly pla...

638 citations

Journal ArticleDOI
TL;DR: In order to improve the accuracy and efficiency of PHM, digital twin (DT), an emerging technology to achieve physical–virtual convergence, is proposed for complex equipment.

483 citations

Journal ArticleDOI
TL;DR: The existing applications of IoT in PLEM are summarized, and the potential applications and challenges of IoT techniques in PleM are analyzed and pointed out.

153 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The state of the art in the area of Industry 4.0 as it relates to industries is surveyed, with a focus on China's Made-in-China 2025 and formal methods and systems methods crucial for realising Industry 5.0.
Abstract: Rapid advances in industrialisation and informatisation methods have spurred tremendous progress in developing the next generation of manufacturing technology. Today, we are on the cusp of the Fourth Industrial Revolution. In 2013, amongst one of 10 ‘Future Projects’ identified by the German government as part of its High-Tech Strategy 2020 Action Plan, the Industry 4.0 project is considered to be a major endeavour for Germany to establish itself as a leader of integrated industry. In 2014, China’s State Council unveiled their ten-year national plan, Made-in-China 2025, which was designed to transform China from the world’s workshop into a world manufacturing power. Made-in-China 2025 is an initiative to comprehensively upgrade China’s industry including the manufacturing sector. In Industry 4.0 and Made-in-China 2025, many applications require a combination of recently emerging new technologies, which is giving rise to the emergence of Industry 4.0. Such technologies originate from different disciplines ...

1,780 citations

Journal ArticleDOI
TL;DR: This paper thoroughly reviews the state-of-the-art of the DT research concerning the key components of DTs, the current development ofDTs, and the major DT applications in industry and outlines the current challenges and some possible directions for future work.
Abstract: Digital twin (DT) is one of the most promising enabling technologies for realizing smart manufacturing and Industry 4.0. DTs are characterized by the seamless integration between the cyber and physical spaces. The importance of DTs is increasingly recognized by both academia and industry. It has been almost 15 years since the concept of the DT was initially proposed. To date, many DT applications have been successfully implemented in different industries, including product design, production, prognostics and health management, and some other fields. However, at present, no paper has focused on the review of DT applications in industry. In an effort to understand the development and application of DTs in industry, this paper thoroughly reviews the state-of-the-art of the DT research concerning the key components of DTs, the current development of DTs, and the major DT applications in industry. This paper also outlines the current challenges and some possible directions for future work.

1,467 citations

Journal ArticleDOI
TL;DR: It is shown, that literature concerning the highest development stage, the DT, is scarce, whilst there is more literature about DM and DS.

1,250 citations

Journal ArticleDOI
TL;DR: The findings show that Industry 4.0 is related to a systemic adoption of the front-end technologies, in which Smart Manufacturing plays a central role, and the implementation of the base technologies is challenging companies, since big data and analytics are still low implemented in the sample studied.

1,245 citations

Journal ArticleDOI
TL;DR: In this article, the authors studied how the adoption of different Industry 4.0 technologies is associated with expected benefits for product, operations and side-effects aspects in the Brazilian industry.

1,024 citations